Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
1.
Structure ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39013463

RESUMO

The recently emerged BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 variants have a growth advantage. In this study, we explore the structural bases of receptor binding and immune evasion for the Omicron BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 sub-variants. Our findings reveal that BA.2.86 exhibits strong receptor binding, whereas its JN.1 sub-lineage displays a decreased binding affinity to human ACE2 (hACE2). Through complex structure analyses, we observed that the reversion of R493Q in BA.2.86 receptor binding domain (RBD) plays a facilitating role in receptor binding, while the L455S substitution in JN.1 RBD restores optimal affinity. Furthermore, the structure of monoclonal antibody (mAb) S309 complexed with BA.2.86 RBD highlights the importance of the K356T mutation, which brings a new N-glycosylation motif, altering the binding pattern of mAbs belonging to RBD-5 represented by S309. These findings emphasize the importance of closely monitoring BA.2.86 and its sub-lineages to prevent another wave of SARS-CoV-2 infections.

2.
IUBMB Life ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923653

RESUMO

To date, SARS-CoV-2 has caused millions of deaths, but the choice of treatment is limited. We previously established a platform for identifying Food and Drug Administration (FDA)-approved repurposed drugs for avian influenza A virus infections that could be used for coronavirus disease 2019 (COVID-19) treatment. In this study, we analyzed blood samples from two cohorts of 63 COVID-19 patients, including 19 patients with severe disease. Among the 39 FDA-approved drugs we identified for COVID-19 therapy in both cohorts, 23 drugs were confirmed by literature mining data, including 14 drugs already under COVID-19 clinical trials and 9 drugs reported for COVID-19 treatments, suggesting the remaining 16 FDA-approved drugs may be candidates for COVID-19 therapy. Additionally, we previously reported that herbal small RNAs (sRNAs) could be effective components in traditional Chinese medicine (TCM) for treating COVID-19. Based on the abundance of sRNAs, we screened the 245 TCMs in the Bencao (herbal) sRNA Atlas that we had previously established, and we found that the top 12 TCMs for COVID-19 treatment was consistent across both cohorts. We validated the efficiency of the top 30 sRNAs from each of the top 3 TCMs for COVID-19 treatment in poly(I:C)-stimulated human non-small cell lung cancer cells (A549 cells). In conclusion, our study recommends potential COVID-19 remedies using FDA-approved repurposed drugs and herbal sRNAs from TCMs.

4.
EMBO Rep ; 25(7): 3116-3136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877169

RESUMO

A novel pangolin-origin MERS-like coronavirus (CoV), MjHKU4r-CoV-1, was recently identified. It is closely related to bat HKU4-CoV, and is infectious in human organs and transgenic mice. MjHKU4r-CoV-1 uses the dipeptidyl peptidase 4 (DPP4 or CD26) receptor for virus entry and has a broad host tropism. However, the molecular mechanism of its receptor binding and determinants of host range are not yet clear. Herein, we determine the structure of the MjHKU4r-CoV-1 spike (S) protein receptor-binding domain (RBD) complexed with human CD26 (hCD26) to reveal the basis for its receptor binding. Measuring binding capacity toward multiple animal receptors for MjHKU4r-CoV-1, mutagenesis analyses, and homology modeling highlight that residue sites 291, 292, 294, 295, 336, and 344 of CD26 are the crucial host range determinants for MjHKU4r-CoV-1. These results broaden our understanding of this potentially high-risk virus and will help us prepare for possible outbreaks in the future.


Assuntos
Dipeptidil Peptidase 4 , Especificidade de Hospedeiro , Ligação Proteica , Receptores Virais , Glicoproteína da Espícula de Coronavírus , Tropismo Viral , Humanos , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/química , Camundongos , Sítios de Ligação , Internalização do Vírus , Modelos Moleculares , Domínios Proteicos , Tropismo ao Hospedeiro
5.
Immunohorizons ; 8(6): 415-430, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885041

RESUMO

The individual HLA-related susceptibility to emerging viral diseases such as COVID-19 underscores the importance of understanding how HLA polymorphism influences peptide presentation and T cell recognition. Similar to HLA-A*0101, which is one of the earliest identified HLA alleles among the human population, HLA-A*2601 possesses a similar characteristic for the binding peptide and acts as a prevalent allomorph in HLA-I. In this study, we found that, compared with HLA-A*0101, HLA-A*2601 individuals exhibit distinctive features for the T cell responses to SARS-CoV-2 and influenza virus after infection and/or vaccination. The heterogeneous T cell responses can be attributed to the distinct preference of HLA-A*2601 and HLA-A*0101 to T cell epitope motifs with negative-charged residues at the P1 and P3 positions, respectively. Furthermore, we determined the crystal structures of the HLA-A*2601 complexed to four peptides derived from SARS-CoV-2 and human papillomavirus, with one structure of HLA-A*0101 for comparison. The shallow pocket C of HLA-A*2601 results in the promiscuous presentation of peptides with "switchable" bulged conformations because of the secondary anchor in the median portion. Notably, the hydrogen bond network formed between the negative-charged P1 anchors and the HLA-A*2601-specific residues lead to a "closed" conformation and solid placement for the P1 secondary anchor accommodation in pocket A. This insight sheds light on the intricate relationship between HLA I allelic allomorphs, peptide binding, and the immune response and provides valuable implications for understanding disease susceptibility and potential vaccine design.


Assuntos
COVID-19 , Epitopos de Linfócito T , SARS-CoV-2 , Humanos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/imunologia , COVID-19/virologia , Antígenos HLA-A/imunologia , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Antígenos HLA-A/química , Peptídeos/imunologia , Peptídeos/química , Alelos , Antígeno HLA-A1
6.
Signal Transduct Target Ther ; 9(1): 160, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866784

RESUMO

The herd immunity against SARS-CoV-2 is continuously consolidated across the world during the ongoing pandemic. However, the potential function of the nonconserved epitopes in the reverse preexisting cross-reactivity induced by SARS-CoV-2 to other human coronaviruses is not well explored. In our research, we assessed T cell responses to both conserved and nonconserved peptides shared by SARS-CoV-2 and SARS-CoV, identifying cross-reactive CD8+ T cell epitopes using enzyme-linked immunospot and intracellular cytokine staining assays. Then, in vitro refolding and circular dichroism were performed to evaluate the thermal stability of the HLA/peptide complexes. Lastly, single-cell T cell receptor reservoir was analyzed based on tetramer staining. Here, we discovered that cross-reactive T cells targeting SARS-CoV were present in individuals who had recovered from COVID-19, and identified SARS-CoV-2 CD8+ T cell epitopes spanning the major structural antigens. T cell responses induced by the nonconserved peptides between SARS-CoV-2 and SARS-CoV were higher and played a dominant role in the cross-reactivity in COVID-19 convalescents. Cross-T cell reactivity was also observed within the identified series of CD8+ T cell epitopes. For representative immunodominant peptide pairs, although the HLA binding capacities for peptides from SARS-CoV-2 and SARS-CoV were similar, the TCR repertoires recognizing these peptides were distinct. Our results could provide beneficial information for the development of peptide-based universal vaccines against coronaviruses.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Reações Cruzadas , Epitopos de Linfócito T , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Feminino , Masculino , Adulto , Pandemias , Pessoa de Meia-Idade
7.
Cell Rep ; 43(5): 114235, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748880

RESUMO

Nanoparticle vaccines displaying mosaic receptor-binding domains (RBDs) or spike (S) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or other sarbecoviruses are used in preparedness against potential zoonotic outbreaks. Here, we describe a self-assembling nanoparticle using lumazine synthase (LuS) as the scaffold to display RBDs from different sarbecoviruses. Mosaic nanoparticles induce sarbecovirus cross-neutralizing antibodies comparable to a nanoparticle cocktail. We find mosaic nanoparticles elicit a B cell receptor repertoire using an immunodominant germline gene pair of IGHV14-3:IGKV14-111. Most of the tested IGHV14-3:IGKV14-111 monoclonal antibodies (mAbs) are broadly cross-reactive to clade 1a, 1b, and 3 sarbecoviruses. Using mAb competition and cryo-electron microscopy, we determine that a representative IGHV14-3:IGKV14-111 mAb, M2-7, binds to a conserved epitope on the RBD, largely overlapping with the pan-sarbecovirus mAb S2H97. This suggests mosaic nanoparticles expand B cell recognition of the common epitopes shared by different clades of sarbecoviruses. These results provide immunological insights into the cross-reactive responses elicited by mosaic nanoparticles against sarbecoviruses.


Assuntos
Nanopartículas , Nanopartículas/química , Animais , Humanos , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Reações Cruzadas/imunologia , Formação de Anticorpos/imunologia , COVID-19/imunologia , COVID-19/virologia , Domínios Proteicos , Camundongos Endogâmicos BALB C , Complexos Multienzimáticos/imunologia , Feminino , Epitopos Imunodominantes/imunologia
8.
Nat Commun ; 15(1): 4660, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821921

RESUMO

The recent outbreak of mpox epidemic, caused by monkeypox virus (MPXV), poses a new threat to global public health. Here, we initially assessed the preexisting antibody level to the MPXV B6 protein in vaccinia vaccinees born before the end of the immunization program and then identified two monoclonal antibodies (MAbs), hMB621 and hMB668, targeting distinct epitopes on B6, from one vaccinee. Binding assays demonstrate that both MAbs exhibit broad binding abilities to B6 and its orthologs in vaccinia (VACV), variola (VARV) and cowpox viruses (CPXV). Neutralizing assays reveal that the two MAbs showed potent neutralization against VACV. Animal experiments using a BALB/c female mouse model indicate that the two MAbs showed effective protection against VACV via intraperitoneal injection. Additionally, we determined the complex structure of B6 and hMB668, revealing the structural feature of B6 and the epitope of hMB668. Collectively, our study provides two promising antibody candidates for the treatment of orthopoxvirus infections, including mpox.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Camundongos Endogâmicos BALB C , Animais , Humanos , Feminino , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Monkeypox virus/imunologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/prevenção & controle , Vaccinia virus/imunologia , Orthopoxvirus/imunologia , Mpox/imunologia , Mpox/prevenção & controle
9.
Signal Transduct Target Ther ; 9(1): 131, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740785

RESUMO

Almost all the neutralizing antibodies targeting the receptor-binding domain (RBD) of spike (S) protein show weakened or lost efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged or emerging variants, such as Omicron and its sub-variants. This suggests that highly conserved epitopes are crucial for the development of neutralizing antibodies. Here, we present one nanobody, N235, displaying broad neutralization against the SARS-CoV-2 prototype and multiple variants, including the newly emerged Omicron and its sub-variants. Cryo-electron microscopy demonstrates N235 binds a novel, conserved, cryptic epitope in the N-terminal domain (NTD) of the S protein, which interferes with the RBD in the neighboring S protein. The neutralization mechanism interpreted via flow cytometry and Western blot shows that N235 appears to induce the S1 subunit shedding from the trimeric S complex. Furthermore, a nano-IgM construct (MN235), engineered by fusing N235 with the human IgM Fc region, displays prevention via inducing S1 shedding and cross-linking virus particles. Compared to N235, MN235 exhibits varied enhancement in neutralization against pseudotyped and authentic viruses in vitro. The intranasal administration of MN235 in low doses can effectively prevent the infection of Omicron sub-variant BA.1 and XBB in vivo, suggesting that it can be developed as a promising prophylactic antibody to cope with the ongoing and future infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Epitopos , Imunoglobulina M , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Humanos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Epitopos/imunologia , Epitopos/genética , Epitopos/química , Animais , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Imunoglobulina M/imunologia , Imunoglobulina M/genética , Camundongos , Domínios Proteicos , Microscopia Crioeletrônica
11.
Med ; 5(5): 401-413.e4, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38574739

RESUMO

BACKGROUND: The recently circulating Omicron variants BA.2.86 and JN.1 were identified with more than 30 amino acid changes on the spike protein compared to BA.2 or XBB.1.5. This study aimed to comprehensively assess the immune escape potential of BA.2.86, JN.1, EG.5, and EG.5.1. METHODS: We collected human and murine sera to evaluate serological neutralization activities. The participants received three doses of coronavirus disease 2019 (COVID-19) vaccines or a booster dose of the ZF2022-A vaccine (Delta-BA.5 receptor-binding domain [RBD]-heterodimer immunogen) or experienced a breakthrough infection (BTI). The ZF2202-A vaccine is under clinical trial study (ClinicalTrials.gov: NCT05850507). BALB/c mice were vaccinated with a panel of severe acute respiratory syndrome coronavirus 2 RBD-dimer proteins. The antibody evasion properties of these variants were analyzed with 41 representative human monoclonal antibodies targeting the eight RBD epitopes. FINDINGS: We found that BA.2.86 had less neutralization evasion than EG.5 and EG.5.1 in humans. The ZF2202-A booster induced significantly higher neutralizing titers than BTI. Furthermore, BA.2.86 and JN.1 exhibited stronger antibody evasion than EG.5 and EG.5.1 on RBD-4 and RBD-5 epitopes. Compared to BA.2.86, JN.1 further lost the ability to bind to several RBD-1 monoclonal antibodies and displayed further immune escape. CONCLUSIONS: Our data showed that the currently dominating sub-variant, JN.1, showed increased immune evasion compared to BA.2.86 and EG.5.1, which is highly concerning. This study provides a timely risk assessment of the interested sub-variants and the basis for updating COVID-19 vaccines. FUNDING: This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, the Beijing Life Science Academy, the Bill & Melinda Gates Foundation, and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF).


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Humanos , Animais , Anticorpos Monoclonais/imunologia , SARS-CoV-2/imunologia , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , COVID-19/prevenção & controle , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Masculino , Soros Imunes/imunologia , Adulto , Evasão da Resposta Imune , Testes de Neutralização , Epitopos/imunologia
12.
EMBO J ; 43(8): 1484-1498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467833

RESUMO

Since SARS-CoV-2 Omicron variant emerged, it is constantly evolving into multiple sub-variants, including BF.7, BQ.1, BQ.1.1, XBB, XBB.1.5 and the recently emerged BA.2.86 and JN.1. Receptor binding and immune evasion are recognized as two major drivers for evolution of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the underlying mechanism of interplay between two factors remains incompletely understood. Herein, we determined the structures of human ACE2 complexed with BF.7, BQ.1, BQ.1.1, XBB and XBB.1.5 RBDs. Based on the ACE2/RBD structures of these sub-variants and a comparison with the known complex structures, we found that R346T substitution in the RBD enhanced ACE2 binding upon an interaction with the residue R493, but not Q493, via a mechanism involving long-range conformation changes. Furthermore, we found that R493Q and F486V exert a balanced impact, through which immune evasion capability was somewhat compromised to achieve an optimal receptor binding. We propose a "two-steps-forward and one-step-backward" model to describe such a compromise between receptor binding affinity and immune evasion during RBD evolution of Omicron sub-variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos
14.
J Genet Genomics ; 51(6): 608-616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447818

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection often leads to pulmonary complications. Cardiovascular sequelae, including myocarditis and heart failure, have also been reported. Here, the study presents two fulminant myocarditis cases infected by SARS-CoV-2 exhibiting remarkable elevation of cardiac biomarkers without significant pulmonary injury, as determined by imaging examinations. Immunohistochemical staining reveals the viral antigen within cardiomyocytes, indicating that SARS-CoV-2 could directly infect the myocardium. The full viral genomes from respiratory, anal, and myocardial specimens are obtained via next-generation sequencing. Phylogenetic analyses of the whole genome and spike gene indicate that viruses in the myocardium/pericardial effusion and anal swabs are closely related and cluster together yet diverge from those in the respiratory samples. In addition, unique mutations are found in the anal/myocardial strains compared to the respiratory strains, suggesting tissue-specific virus mutation and adaptation. These findings indicate genetically distinct SARS-CoV-2 variants have infiltrated and disseminated within myocardial tissues, independent of pulmonary injury, and point to different infection routes between the myocardium and respiratory tract, with myocardial infections potentially arising from intestinal infection. These findings highlight the potential for systemic SARS-CoV-2 infection and the importance of a thorough multi-organ assessment in patients for a comprehensive understanding of the pathogenesis of COVID-19.


Assuntos
COVID-19 , Miocardite , Filogenia , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/complicações , COVID-19/patologia , Miocardite/virologia , Miocardite/patologia , Miocardite/genética , SARS-CoV-2/genética , Masculino , Pulmão/virologia , Pulmão/patologia , Pessoa de Meia-Idade , Genoma Viral/genética , Adulto , Miocárdio/patologia , Feminino , Mutação/genética
15.
J Virol ; 98(3): e0140123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38358287

RESUMO

Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Aves , Genótipo , Vírus da Influenza A/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Filogenia , Aves Domésticas
16.
J Virol ; 98(3): e0153623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315014

RESUMO

African swine fever (ASF) is a highly contagious viral disease that affects domestic and wild pigs. The causative agent of ASF is African swine fever virus (ASFV), a large double-stranded DNA virus with a complex virion structure. Among the various proteins encoded by ASFV, A137R is a crucial structural protein associated with its virulence. However, the structure and molecular mechanisms underlying the functions of A137R remain largely unknown. In this study, we present the structure of A137R determined by cryogenic electron microscopy single-particle reconstruction, which reveals that A137R self-oligomerizes to form a dodecahedron-shaped cage composed of 60 polymers. The dodecahedron is literally equivalent to a T = 1 icosahedron where the icosahedral vertexes are located in the center of each dodecahedral facet. Within each facet, five A137R protomers are arranged in a head-to-tail orientation with a long N-terminal helix forming the edge through which adjacent facets stitch together to form the dodecahedral cage. Combining structural analysis and biochemical evidence, we demonstrate that the N-terminal domain of A137R is crucial and sufficient for mediating the assembly of the dodecahedron. These findings imply the role of A137R cage as a core component in the icosahedral ASFV virion and suggest a promising molecular scaffold for nanotechnology applications. IMPORTANCE: African swine fever (ASF) is a lethal viral disease of pigs caused by African swine fever virus (ASFV). No commercial vaccines and antiviral treatments are available for the prevention and control of the disease. A137R is a structural protein of ASFV that is associated with its virulence. The discovery of the dodecahedron-shaped cage structure of A137R in this study is of great importance in understanding ASFV pathogenicity. This finding sheds light on the molecular mechanisms underlying the functions of A137R. Furthermore, the dodecahedral cage formed by A137R shows promise as a molecular scaffold for nanoparticle vectors. Overall, this study provides valuable insights into the structure and function of A137R, contributing to our understanding of ASFV and potentially opening up new avenues for the development of vaccines or treatments for ASF.


Assuntos
Vírus da Febre Suína Africana , Suínos , Proteínas Estruturais Virais , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/ultraestrutura , Microscopia Crioeletrônica , Relação Estrutura-Atividade , Suínos/virologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura , Virulência
17.
J Virol ; 98(1): e0078923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168677

RESUMO

Zika virus (ZIKV) infection caused neurological complications and male infertility, leading to the accumulation of antigen-specific immune cells in immune-privileged organs (IPOs). Thus, it is important to understand the immunological responses to ZIKV in IPOs. We extensively investigated the ZIKV-specific T cell immunity in IPOs in Ifnar1-/- mice, based on an immunodominant epitope E294-302 tetramer. The distinct kinetics and functions of virus-specific CD8+ T cells infiltrated into different IPOs were characterized, with late elevation in the brain and spinal cord. Single epitope E294-302-specific T cells can account for 20-60% of the total CD8+ T cells in the brain, spinal cord, and testicle and persist for at least 90 days in the brain and spinal cord. The E294-302-specific TCRαßs within the IPOs are featured with the majority of clonotypes utilizing TRAV9N-3 paired with diverse TRBV chains, but with distinct αß paired clonotypes in 7 and 30 days post-infection. Specific chemokine receptors, Ccr2 and Ccr5, were selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of virus-specific CD8+ T cells after infection. Overall, this study adds to the understanding of virus-specific CD8+ T cell responses for controlling and clearing ZIKV infection in IPOs.IMPORTANCEThe immune-privileged organs (IPOs), such as the central nervous system and testicles, presented pathogenicity and inflammation after Zika virus (ZIKV) infection with infiltrated CD8+ T cells. Our data show that CD8+ T cells keep up with virus increases and decreases in immune-privileged organs. Furthermore, our study provides the first ex vivo comparative analyses of the composition and diversity related to TCRα/ß clonotypes across anatomical sites and ZIKV infection phases. We show that the vast majority of TCRα/ß clonotypes in tissues utilize TRAV9N-3 with conservation. Specific chemokine expression, including Ccr2 and Ccr5, was found to be selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of the virus-specific CD8+ T cells after the infection. Our study adds insights into the anti-viral immunological characterization and chemotaxis mechanism of virus-specific CD8+ T cells after ZIKV infection in different IPOs.


Assuntos
Linfócitos T CD8-Positivos , Privilégio Imunológico , Infecção por Zika virus , Animais , Masculino , Camundongos , Encéfalo/imunologia , Encéfalo/virologia , Linfócitos T CD8-Positivos/imunologia , Receptor de Interferon alfa e beta/genética , Zika virus , Infecção por Zika virus/imunologia , Camundongos Knockout , Testículo/imunologia , Testículo/virologia
19.
20.
J Virol ; 98(1): e0116623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054704

RESUMO

Both influenza A virus genome transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the influenza RNA polymerase (FluPol), are dynamically regulated across the virus life cycle. It has been reported that the last amino acid I121 of the viral NS2 protein plays a critical role in promoting viral genome replication in influenza mini-replicon systems. Here, we performed a 20 natural amino acid substitution screening at residue NS2-I121 in the context of virus infection. We found that the hydrophobicity of the residue 121 is essential for virus survival. Interestingly, through serial passage of the rescued mutant viruses, we further identified adaptive mutations PA-K19E and PB1-S713N on FluPol which could effectively compensate for the replication-promoting defect caused by NS2-I121 mutation in the both mini-replicon and virus infection systems. Structural analysis of different functional states of FluPol indicates that PA-K19E and PB1-S713N could stabilize the replicase conformation of FluPol. By using a cell-based NanoBiT complementary reporter assay, we further demonstrate that both wild-type NS2 and PA-K19E/PB1-S713N could enhance FluPol dimerization, which is necessary for genome replication. These results reveal the critical role NS2 plays in promoting viral genome replication by coordinating with FluPol.IMPORTANCEThe intrinsic mechanisms of influenza RNA polymerase (FluPol) in catalyzing viral genome transcription and replication have been largely resolved. However, the mechanisms of how transcription and replication are dynamically regulated remain elusive. We recently reported that the last amino acid of the viral NS2 protein plays a critical role in promoting viral genome replication in an influenza mini-replicon system. Here, we conducted a 20 amino acid substitution screening at the last residue 121 in virus rescue and serial passage. Our results demonstrate that the replication-promoting function of NS2 is important for virus survival and efficient multiplication. We further show evidence that NS2 and NS2-I121 adaptive mutations PA-K19E/PB1-S713N regulate virus genome replication by promoting FluPol dimerization. This work highlights the coordination between NS2 and FluPol in fulfilling efficient genome replication. It further advances our understanding of the regulation of viral RNA synthesis for influenza A virus.


Assuntos
Vírus da Influenza A , Proteínas não Estruturais Virais , Humanos , Substituição de Aminoácidos , Aminoácidos/genética , RNA Polimerases Dirigidas por DNA/genética , Vírus da Influenza A/genética , Influenza Humana/genética , Proteínas Virais/genética , Replicação Viral , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...