RESUMO
Poor mechanical strength at working temperature and low ionic conductivity seriously hinder the application of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) in high performance all-solid-state lithium metal batteries (LMBs). Here, we design and prepare a series of rigid-flexible coupling network SPEs (RFN-SPEs) with soft poly(ethylene glycol) (PEG) chains and rigid crosslinkers containing the benzene structure. Compared with soft crosslinkers, rigid crosslinkers provide the same amount of active crosslinking points with smaller molecular weight, and meanwhile enhance the mechanical strength of the network. Therefore, based on the rigid crosslinkers, RFN-SPEs exhibit synchronously improved ionic conductivity and mechanical strength. With these RFN-SPEs, symmetrical cells can be cycled for over 2100 h at 0.5 mA cm-2. Meanwhile, stable cycling and high-rate capability could be achieved for LMBs, revealing that SPEs with the rigid-flexible coupling network are promising electrolyte systems for all-solid-state LMBs.