Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2410255, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223930

RESUMO

Efficient and stable red perovskite light-emitting diodes (PeLEDs) demonstrate promising potential in high-definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long-term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well-aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half-lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m-2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs.

2.
Nat Commun ; 15(1): 7697, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227570

RESUMO

Optically addressable spin defects in three-dimensional (3D) crystals and two-dimensional (2D) van der Waals (vdW) materials are revolutionizing nanoscale quantum sensing. Spin defects in one-dimensional (1D) vdW nanotubes will provide unique opportunities due to their small sizes in two dimensions and absence of dangling bonds on side walls. However, optically detected magnetic resonance of localized spin defects in a nanotube has not been observed. Here, we report the observation of single spin color centers in boron nitride nanotubes (BNNTs) at room temperature. Our findings suggest that these BNNT spin defects possess a spin S = 1/2 ground state without an intrinsic quantization axis, leading to orientation-independent magnetic field sensing. We harness this unique feature to observe anisotropic magnetization of a 2D magnet in magnetic fields along orthogonal directions, a challenge for conventional spin S = 1 defects such as diamond nitrogen-vacancy centers. Additionally, we develop a method to deterministically transfer a BNNT onto a cantilever and use it to demonstrate scanning probe magnetometry. Further refinement of our approach will enable atomic scale quantum sensing of magnetic fields in any direction.

3.
Sci Adv ; 10(39): eadp0790, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331719

RESUMO

Preoptimizing perovskite films may generally improve the performance of the final perovskite solar cells (PSCs). However, the research on whether the film optimization fully contributes to the enhancement of the final PSCs has been long neglected. We demonstrated that the preparation of metal electrodes by high-vacuum thermal evaporation, an unavoidable step in almost all device fabrication processes, will damage the surface of perovskite films, resulting in component escape, defect density rebound, carrier extraction barrier, and film stability deterioration. Therefore, the prepared perovskite film and the final film actually working in devices are not exactly the same, and the contribution of film optimization to the device improvement was weakened. We designed a bilayer structure composed of graphene oxide and graphite flakes to eliminate the unwanted film inconsistencies and thus save the film optimization loss. Therefore, the efficient PSCs with power conversion efficiency of 25.55% were obtained, which demonstrated negligible photovoltaic performance loss after operating for 2000 hours.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39292573

RESUMO

Few-shot class-incremental learning (FSCIL) aims to learn new classes incrementally with a limited number of samples per class. Foundation models combined with prompt tuning showcase robust generalization and zero-shot learning (ZSL) capabilities, endowing them with potential advantages in transfer capabilities for FSCIL. However, existing prompt tuning methods excel in optimizing for stationary datasets, diverging from the inherent sequential nature in the FSCIL paradigm. To address this issue, taking inspiration from the "fast and slow mechanism" of the complementary learning systems (CLSs) in the brain, we present fast-and slow-update prompt tuning FSCIL (FSPT-FSCIL), a brain-inspired prompt tuning method for transferring foundation models to the FSCIL task. We categorize the prompts into two groups: fast-update prompts and slow-update prompts, which are interactively trained through meta-learning. Fast-update prompts aim to learn new knowledge within a limited number of iterations, while slow-update prompts serve as meta-knowledge and aim to strike a balance between rapid learning and avoiding catastrophic forgetting. Through experiments on multiple benchmark tests, we demonstrate the effectiveness and superiority of FSPT-FSCIL. The code is available at https://github.com/qihangran/FSPT-FSCIL.

5.
Nature ; 633(8031): 798-803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39261737

RESUMO

Materials with electromechanical coupling are essential for transducers and acoustic devices as reversible converters between mechanical and electrical energy1-6. High electromechanical responses are typically found in materials with strong structural instabilities, conventionally achieved by two strategies-morphotropic phase boundaries7 and nanoscale structural heterogeneity8. Here we demonstrate a different strategy to accomplish ultrahigh electromechanical response by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders. Guided by the phase diagram and theoretical calculations, we designed the coexistence of antiferroelectric orthorhombic and ferroelectric rhombohedral phases in sodium niobate thin films. These films show effective piezoelectric coefficients above 5,000 pm V-1 because of electric-field-induced antiferroelectric-ferroelectric phase transitions. Our results provide a general approach to design and exploit antiferroelectric materials for electromechanical devices.

6.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126105

RESUMO

The senescence of bone marrow mesenchymal stromal cells (MSCs) leads to the impairment of stemness and osteogenic differentiation capacity. In a previous study, we screened out stearoyl-CoA desaturase 2 (SCD2), the most evidently changed differential gene in lipid metabolism, using combined transcriptomic and metabolomic analyses, and verified that SCD2 could mitigate MSC senescence. However, the underlying molecular mechanism by which the rate-limiting enzyme of lipogenesis SCD2 manipulates MSC senescence has not been completely understood. In this study, we demonstrate that SCD2 over-expression alleviates MSC replicative senescence and ameliorates their osteogenic differentiation through the regulation of lipogenesis. Furthermore, SCD2 expression is reduced, whereas miR-200c-3p expression is elevated in replicative senescent MSCs. SCD2 is the direct target gene of miR-200c-3p, which can bind to the 3'-UTR of SCD2. MiR-200c-3p replenishment in young MSCs is able to diminish SCD2 expression levels due to epigenetic modulation. In addition, SCD2-rescued MSC senescence and enhanced osteogenic differentiation can be attenuated by miR-200c-3p repletion via suppressing lipogenesis. Taken together, we reveal the potential mechanism of SCD2 influencing MSC senescence from the perspective of lipid metabolism and epigenetics, which provides both an experimental basis for elucidating the mechanism of stem cell senescence and a novel target for delaying stem cell senescence.


Assuntos
Senescência Celular , Lipogênese , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Estearoil-CoA Dessaturase , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Lipogênese/genética , Senescência Celular/genética , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica , Células Cultivadas , Epigênese Genética
7.
Angew Chem Int Ed Engl ; : e202409330, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101678

RESUMO

Mixed tin-lead perovskite solar cells can reach bandgaps as low as 1.2 eV, offering high theoretical efficiency and serving as base materials for all-perovskite tandem solar cells. However, instability and high defect densities at the interfaces, particularly the buried surface, have limited performance improvements. In this work, we present the modification of the bottom perovskite interface with multifunctional hydroxylamine salts. These salts can effectively coordinate the different perovskite components, having critical influences in regulating the crystallization process and passivating defects of varying nature. The surface modification reduced traps at the interface and prevented the formation of excessive lead iodide, enhancing the quality of the films. The modified devices presented fill factors reaching 81% and efficiencies of up to 23.8%. The unencapsulated modified devices maintained over 95% of their initial efficiency after 2000 h of shelf storage.

8.
Stem Cell Res Ther ; 15(1): 238, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080798

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are one of the most widely studied adult stem cells, while MSC replicative senescence occurs with serial expansion in vitro. We determined whether miR-34a can regulate MSC senescence by directly targeting glycolytic key enzymes to influence glycolysis. METHODS: Detected the effects of miR-34a on MSC senescence and glycolytic metabolism through gene manipulation. Bioinformatics prediction and luciferase reporter assay were applied to confirm that HK1 is a direct target of miR-34a. The underlying regulatory mechanism of miR-34a targeting HK1 in MSC senescence was further explored by a cellular function recovery experiment. RESULTS: In the current study, we revealed that miR-34a over-expression exacerbated senescence-associated characteristics and impaired glycolytic metabolism. Then we identified hexokinase1 (HK1) as a direct target gene of miR-34a. And HK1 replenishment reversed MSC senescence and reinforced glycolysis. In addition, miR-34a-mediated MSC senescence and lower glycolytic levels were evidently rescued following the co-treatment with HK1 over-expression. CONCLUSION: The miR-34a-HK1 signal axis can alleviate MSC senescence via enhancing glycolytic metabolism, which possibly provides a novel mechanism for MSC senescence and opens up new possibilities for delaying and suppressing the occurrence and development of aging and age-related diseases.


Assuntos
Senescência Celular , Glicólise , Hexoquinase , Células-Tronco Mesenquimais , MicroRNAs , Transdução de Sinais , MicroRNAs/metabolismo , MicroRNAs/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Hexoquinase/metabolismo , Hexoquinase/genética , Humanos
9.
Adv Mater ; 36(36): e2406246, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032067

RESUMO

Mixed tin-lead (Sn-Pb) perovskites have attracted the attention of the community due to their narrow bandgap, ideal for photovoltaic applications, especially tandem solar cells. However, the oxidation and rapid crystallization of Sn2+ and the interfacial traps hinder their development. Here, cross-linkable [6,6]-phenyl-C61-butyric styryl dendron ester (C-PCBSD) is introduced during the quenching step of perovskite thin film processing to suppress the generation of surface defects at the electron transport layer interface and improve the bulk crystallinity. The C-PCBSD has strong coordination ability with Sn2+ and Pb2+ perovskite precursors, which retards the crystallization process, suppresses the oxidation of Sn2+, and improves the perovskite bulk and surface crystallinity, yielding films with reduced nonradiative recombination and enhanced interface charge extraction. Besides, the C-PCBSD network deposited on the perovskite surface displays superior hydrophobicity and oxygen resistance. Consequently, the devices with C-PCBSD obtain PCEs of up to 23.4% and retained 97% of initial efficiency after 2000 h of storage in a N2 atmosphere.

10.
Angew Chem Int Ed Engl ; 63(39): e202406140, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38981859

RESUMO

Blue perovskite light-emitting diodes (PeLEDs) are crucial avenues for achieving full-color displays and lighting based on perovskite materials. However, the relatively low external quantum efficiency (EQE) has hindered their progression towards commercial applications. Quasi-two-dimensional (quasi-2D) perovskites stand out as promising candidates for blue PeLEDs, with optimized control over low-dimensional phases contributing to enhanced radiative properties of excitons. Herein, the impact of organic molecular dopants on the crystallization of various n-phase structures in quasi-2D perovskite films. The results reveal that the highly reactive bis(4-(trifluoromethyl)phenyl)phosphine oxide (BTF-PPO) molecule could effectively restrain the formation of organic spacer cation-ordered layered perovskite phases through chemical reactions, simultaneously passivate those uncoordinated Pb2+ defects. Consequently, the prepared PeLEDs exhibited a maximum EQE of 16.6 % (@ 490 nm). The finding provides a new route to design dopant molecules for phase modulation in quasi-2D PeLEDs.

11.
Adv Mater ; 36(35): e2407433, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973089

RESUMO

Interface-induced nonradiative recombination losses at the perovskite/electron transport layer (ETL) are an impediment to improving the efficiency and stability of inverted (p-i-n) perovskite solar cells (PSCs). Tridecafluorohexane-1-sulfonic acid potassium (TFHSP) is employed as a multifunctional dipole molecule to modify the perovskite surface. The solid coordination and hydrogen bonding efficiently passivate the surface defects, thereby reducing nonradiative recombination. The induced positive dipole layer between the perovskite and ETLs improves the energy band alignment, enhancing interface charge extraction. Additionally, the strong interaction between TFHSP and the perovskite stabilizes the perovskite surface, while the hydrophobic fluorinated moieties prevent the ingress of water and oxygen, enhancing the device stability. The resultant devices achieve a power conversion efficiency (PCE) of 24.6%. The unencapsulated devices retain 91% of their initial efficiency after 1000 h in air with 60% relative humidity, and 95% after 500 h under maximum power point (MPP) tracking at 35 °C. The utilization of multifunctional dipole molecules opens new avenues for high-performance and long-term stable perovskite devices.

12.
J Am Chem Soc ; 146(28): 19108-19117, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38847788

RESUMO

Previous findings have suggested a close association between oxygen vacancies in SnO2 and charge carrier recombination as well as perovskite decomposition at the perovskite/SnO2 interface. Underlying the fundamental mechanism holds great significance in achieving a more favorable balance between the efficiency and stability. In this study, we prepared three SnO2 samples with different oxygen vacancy concentrations and observed that a low oxygen vacancy concentration is conducive to long-term device stability. Iodide ions were observed to easily diffuse into regions with high oxygen vacancies, thereby speeding up the deprotonation of FAI, as made evident by the detection of the decomposition product formamide. In contrast, a high oxygen vacancy concentration in SnO2 could prevent hole injection, leading to a decrease in interfacial recombination losses. To suppress this decomposition reaction and address the trade-off, we designed a bilayer SnO2 structure to ensure highly efficient carrier transport still while maintaining a chemically inert surface. As a result, an enhanced efficiency of 25.06% (certified at 24.55% with an active area of 0.09 cm2 under fast scan) was achieved, and the extended operational stability maintained 90% of their original efficiency (24.52%) after continuous operation for nearly 2000 h. Additionally, perovskite submodules with an active area of 14 cm2 were successfully assembled with a PCE of up to 22.96% (20.09% with an aperture area).

13.
Nat Commun ; 15(1): 5063, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871708

RESUMO

Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring macroscopic quantum mechanics, quantum gravity, and precision measurements. The coupling between spins and particle rotation can be utilized to study quantum geometric phase, create gyroscopes and rotational matter-wave interferometers. However, previous efforts in levitated diamonds struggled with vacuum level or spin state readouts. To address these gaps, we fabricate an integrated surface ion trap with multiple stabilization electrodes. This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum. The internal temperature of our levitated nanodiamond remains moderate at pressures below 10-5 Torr. We have driven a nanodiamond to rotate up to 20 MHz (1.2 × 109 rpm), surpassing typical nitrogen-vacancy (NV) center electron spin dephasing rates. Using these NV spins, we observe the effect of the Berry phase arising from particle rotation. In addition, we demonstrate quantum control of spins in a rotating nanodiamond. These results mark an important development in interfacing mechanical rotation with spin qubits, expanding our capacity to study quantum phenomena.

14.
Sci Rep ; 14(1): 13963, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886483

RESUMO

Perturbation theory (PT) might be one of the most powerful and fruitful tools for both physicists and chemists, which has led to a wide variety of applications. Over the past decades, advances in quantum computing provide opportunities for alternatives to classical methods. Recently, a general quantum circuit estimating the low order PT corrections has been proposed. In this article, we revisit the quantum circuits for PT calculations, and develop the methods for higher order PT corrections of eigenenergy, especially the 3rd and 4th order corrections. We present the feasible quantum circuit to estimate each term in these PT corrections. There are two the fundamental operations in the proposed circuit. One approximates the perturbation terms, the other approximates the inverse of unperturbed energy difference. The proposed method can be generalized to higher order PT corrections.

15.
Adv Mater ; 36(31): e2403038, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38724029

RESUMO

Perovskite solar cells (PSCs) are developed rapidly in efficiency and stability in recent years, which can compete with silicon solar cells. However, an important obstacle to the commercialization of PSCs is the toxicity of lead ions (Pb2+) from water-soluble perovskites. The entry of free Pb2+ into organisms can cause severe harm to humans, such as blood lead poisoning, organ failure, etc. Therefore, this work reports a "lead isolation-capture" dual detoxification strategy with calcium disodium edetate (EDTA Na-Ca), which can inhibit lead leakage from PSCs under extreme conditions. More importantly, leaked lead exists in a nontoxic aggregation state chelated by EDTA. For the first time, in vivo experiments are conducted in mice to systematically prove that this material has a significant inhibitory effect on the toxicity of perovskites. In addition, this strategy can further enhance device performance, enabling the optimized devices to achieve an impressive power conversion efficiency (PCE) of 25.19%. This innovative strategy is a major breakthrough in the research on the prevention of lead toxicity in PSCs.

16.
Bull Math Biol ; 86(6): 71, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719993

RESUMO

Due to the complex interactions between multiple infectious diseases, the spreading of diseases in human bodies can vary when people are exposed to multiple sources of infection at the same time. Typically, there is heterogeneity in individuals' responses to diseases, and the transmission routes of different diseases also vary. Therefore, this paper proposes an SIS disease spreading model with individual heterogeneity and transmission route heterogeneity under the simultaneous action of two competitive infectious diseases. We derive the theoretical epidemic spreading threshold using quenched mean-field theory and perform numerical analysis under the Markovian method. Numerical results confirm the reliability of the theoretical threshold and show the inhibitory effect of the proportion of fully competitive individuals on epidemic spreading. The results also show that the diversity of disease transmission routes promotes disease spreading, and this effect gradually weakens when the epidemic spreading rate is high enough. Finally, we find a negative correlation between the theoretical spreading threshold and the average degree of the network. We demonstrate the practical application of the model by comparing simulation outputs to temporal trends of two competitive infectious diseases, COVID-19 and seasonal influenza in China.


Assuntos
COVID-19 , Simulação por Computador , Influenza Humana , Cadeias de Markov , Conceitos Matemáticos , Modelos Biológicos , SARS-CoV-2 , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/prevenção & controle , Influenza Humana/epidemiologia , Influenza Humana/transmissão , China/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , Modelos Epidemiológicos , Pandemias/estatística & dados numéricos , Pandemias/prevenção & controle , Epidemias/estatística & dados numéricos
17.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732812

RESUMO

The treadmill exercise test (TET) serves as a non-invasive method for the diagnosis of coronary artery disease (CAD). Despite its widespread use, TET reports are susceptible to external influences, heightening the risk of misdiagnosis and underdiagnosis. In this paper, we propose a novel automatic CAD diagnosis approach. The proposed approach introduces a customized preprocessing method to obtain clear electrocardiograms (ECGs) from individual TET reports. Additionally, it presents TETDiaNet, a novel neural network designed to explore the temporal relationships within TET ECGs. Central to TETDiaNet is the TETDia block, which mimics clinicians' diagnostic processes to extract essential diagnostic information. This block encompasses an intra-state contextual learning module and an inter-state contextual learning module, modeling the temporal relationships within a single state and between states, respectively. These two modules help the TETDia block to capture effective diagnosis information by exploring the temporal relationships within TET ECGs. Furthermore, we establish a new TET dataset named TET4CAD for CAD diagnosis. It contains simplified TET reports for 192 CAD patients and 224 non-CAD patients, and each patient undergoes coronary angiography for labeling. Experimental results on TET4CAD underscore the superior performance of the proposed approach, highlighting the discriminative value of the temporal relationships within TET ECGs for CAD diagnosis.


Assuntos
Doença da Artéria Coronariana , Eletrocardiografia , Teste de Esforço , Redes Neurais de Computação , Humanos , Doença da Artéria Coronariana/diagnóstico , Teste de Esforço/métodos , Eletrocardiografia/métodos , Masculino , Algoritmos , Feminino
18.
Nanomicro Lett ; 16(1): 190, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698298

RESUMO

A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.

19.
J Agric Food Chem ; 72(19): 10897-10908, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691522

RESUMO

Gramine (GRM), which occurs in Gramineae plants, has been developed to be a biological insecticide. Exposure to GRM was reported to induce elevations of serum ALT and AST in rats, but the mechanisms of the observed hepatotoxicity have not been elucidated. The present study aimed to identify reactive metabolites that potentially participate in the toxicity. In rat liver microsomal incubations fortified with glutathione or N-acetylcysteine, one oxidative metabolite (M1), one glutathione conjugate (M2), and one N-acetylcysteine conjugate (M3) were detected after exposure to GRM. The corresponding conjugates were detected in the bile and urine of rats after GRM administration. CYP3A was the main enzyme mediating the metabolic activation of GRM. The detected GSH and NAC conjugates suggest that GRM was metabolized to a quinone imine intermediate. Both GRM and M1 showed significant toxicity to rat primary hepatocytes.


Assuntos
Ativação Metabólica , Citocromo P-450 CYP3A , Hepatócitos , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Microssomos Hepáticos/metabolismo , Glutationa/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Alcaloides/metabolismo
20.
Nano Lett ; 24(17): 5284-5291, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626333

RESUMO

The performance of blue quantum dot light-emitting diodes (QLEDs) is limited by unbalanced charge injection, resulting from insufficient holes caused by low mobility or significant energy barriers. Here, we introduce an angular-shaped heteroarene based on cyclopentane[b]thiopyran (C8-SS) to modify the hole transport layer poly-N-vinylcarbazole (PVK), in blue QLEDs. C8-SS exhibits high hole mobility and conductivity due to the π···π and S···π interactions. Introducing C8-SS to PVK significantly enhanced hole mobility, increasing it by 2 orders of magnitude from 2.44 × 10-6 to 1.73 × 10-4 cm2 V-1 s-1. Benefiting from high mobility and conductivity, PVK:C8-SS-based QLEDs exhibit a low turn-on voltage (Von) of 3.2 V. More importantly, the optimized QLEDs achieve a high peak power efficiency (PE) of 7.13 lm/W, which is 2.65 times that of the control QLEDs. The as-proposed interface engineering provides a novel and effective strategy for achieving high-performance blue QLEDs in low-energy consumption lighting applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...