Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4474, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796514

RESUMO

Olfaction feedback systems could be utilized to stimulate human emotion, increase alertness, provide clinical therapy, and establish immersive virtual environments. Currently, the reported olfaction feedback technologies still face a host of formidable challenges, including human perceivable delay in odor manipulation, unwieldy dimensions, and limited number of odor supplies. Herein, we report a general strategy to solve these problems, which associates with a wearable, high-performance olfactory interface based on miniaturized odor generators (OGs) with advanced artificial intelligence (AI) algorithms. The OGs serve as the core technology of the intelligent olfactory interface, which exhibit milestone advances in millisecond-level response time, milliwatt-scale power consumption, and the miniaturized size. Empowered by robust AI algorithms, the olfactory interface shows its great potentials in latency-free mixed reality (MR) and fast olfaction enhancement, thereby establishing a bridge between electronics and users for broad applications ranging from entertainment, to education, to medical treatment, and to human machine interfaces.


Assuntos
Algoritmos , Inteligência Artificial , Odorantes , Olfato , Dispositivos Eletrônicos Vestíveis , Humanos , Olfato/fisiologia , Interface Usuário-Computador , Adulto , Masculino
2.
Nature ; 628(8006): 84-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538792

RESUMO

Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Pele , Têxteis , Eletrodos
3.
Nat Commun ; 14(1): 7539, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985765

RESUMO

The rapid diagnosis of respiratory virus infection through breath and blow remains challenging. Here we develop a wireless, battery-free, multifunctional pathogenic infection diagnosis system (PIDS) for diagnosing SARS-CoV-2 infection and symptom severity by blow and breath within 110 s and 350 s, respectively. The accuracies reach to 100% and 92% for evaluating the infection and symptom severity of 42 participants, respectively. PIDS realizes simultaneous gaseous sample collection, biomarker identification, abnormal physical signs recording and machine learning analysis. We transform PIDS into other miniaturized wearable or portable electronic platforms that may widen the diagnostic modes at home, outdoors and public places. Collectively, we demonstrate a general-purpose technology for rapidly diagnosing respiratory pathogenic infection by breath and blow, alleviating the technical bottleneck of saliva and nasopharyngeal secretions. PIDS may serve as a complementary diagnostic tool for other point-of-care techniques and guide the symptomatic treatment of viral infections.


Assuntos
Líquidos Corporais , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Manejo de Espécimes , Saliva
4.
ACS Nano ; 17(21): 21947-21961, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37917185

RESUMO

Deaf-blindness limits daily human activities, especially interactive modes of audio and visual perception. Although the developed standards have been verified as alternative communication methods, they are uncommon to the nondisabled due to the complicated learning process and inefficiency in terms of communicating distance and throughput. Therefore, the development of communication techniques employing innate sensory abilities including olfaction related to the cerebral limbic system processing emotions, memories, and recognition has been suggested for reducing the training level and increasing communication efficiency. Here, a skin-integrated and wireless olfactory interface system exploiting arrays of miniaturized odor generators (OGs) based on melting/solidifying odorous wax to release smell is introduced for establishing an advanced communication system between deaf-blind and non-deaf-blind. By optimizing the structure design of the OGs, each OG device is as small as 0.24 cm3 (length × width × height of 11 mm × 10 mm × 2.2 mm), enabling integration of up to 8 OGs on the epidermis between nose and lip for direct and rapid olfactory drive with a weight of only 24.56 g. By generating single or mixed odors, different linked messages could be delivered to a user within a short period in a wireless and programmable way. By adopting the olfactory interface message delivery system, the recognition rates for the messages have been improved 1.5 times that of the touch-based method, while the response times were immensely decreased 4 times. Thus, the presented wearable olfactory interface system exhibits great potential as an alternative message delivery method for the deaf-blind.


Assuntos
Odorantes , Olfato , Humanos , Olfato/fisiologia , Aprendizagem , Pele , Eletrônica
5.
Nat Commun ; 14(1): 5009, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591881

RESUMO

Continuous monitoring of arterial blood pressure (BP) outside of a clinical setting is crucial for preventing and diagnosing hypertension related diseases. However, current continuous BP monitoring instruments suffer from either bulky systems or poor user-device interfacial performance, hampering their applications in continuous BP monitoring. Here, we report a thin, soft, miniaturized system (TSMS) that combines a conformal piezoelectric sensor array, an active pressure adaptation unit, a signal processing module, and an advanced machine learning method, to allow real wearable, continuous wireless monitoring of ambulatory artery BP. By optimizing the materials selection, control/sampling strategy, and system integration, the TSMS exhibits improved interfacial performance while maintaining Grade A level measurement accuracy. Initial trials on 87 volunteers and clinical tracking of two hypertension individuals prove the capability of the TSMS as a reliable BP measurement product, and its feasibility and practical usability in precise BP control and personalized diagnosis schemes development.


Assuntos
Hipertensão , Dispositivos Eletrônicos Vestíveis , Humanos , Pressão Arterial , Pressão Sanguínea , Hipertensão/diagnóstico , Artérias
6.
Nat Commun ; 14(1): 2297, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160931

RESUMO

Recent advances in virtual reality (VR) technologies accelerate the creation of a flawless 3D virtual world to provide frontier social platform for human. Equally important to traditional visual, auditory and tactile sensations, olfaction exerts both physiological and psychological influences on humans. Here, we report a concept of skin-interfaced olfactory feedback systems with wirelessly, programmable capabilities based on arrays of flexible and miniaturized odor generators (OGs) for olfactory VR applications. By optimizing the materials selection, design layout, and power management, the OGs exhibit outstanding device performance in various aspects, from response rate, to odor concentration control, to long-term continuous operation, to high mechanical/electrical stability and to low power consumption. Representative demonstrations in 4D movie watching, smell message delivery, medical treatment, human emotion control and VR/AR based online teaching prove the great potential of the soft olfaction interface in various practical applications, including entertainment, education, human machine interfaces and so on.


Assuntos
Olfato , Realidade Virtual , Humanos , Escolaridade , Eletricidade , Emoções
7.
Adv Healthc Mater ; 12(15): e2202846, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36773301

RESUMO

Intelligent monitoring human physiological information in real time raises the demand for skin-integrated electronics, as which is a flexible format and can be mounted onto the curved human skin for noninvasive healthcare monitoring. The biofluid such as sweat from skin contains abundant biomarkers reflecting body health conditions. Here, a skin-integrated sweat monitor with six biosensors embedded for the detection of NH4 + , Na+ , glucose, pH, skin impedance, and surface temperature is described, which could decode the information in the fresh sweat generated during exercising. Furthermore, the system also includes an innovative safety warning mechanism, which is based on a miniaturized actuator to provide mechanical stimuli, and coupled with six changeable colors light emitting diodes corresponding to the six biosensors for providing simultaneous safety alarming to users. The self-developed microfluidics system with a hydrophilic surface allows to enhance the sweat collection rate. Meanwhile, microfluidic filters can reduce the interruption of skin debris during biosignal monitoring. These state-of-art biosensors can real-time monitor health related signals with excellent linearity and specificity. The skin-integrated sweat monitor system exhibits a great potential in human healthcare monitoring and medical treatment.


Assuntos
Técnicas Biossensoriais , Suor , Humanos , Pele , Íons , Atenção à Saúde
8.
Fundam Res ; 3(1): 111-117, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933565

RESUMO

With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces.

9.
Sci Adv ; 8(51): eade2450, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563155

RESUMO

Tactile sensations are mainly transmitted to each other by physical touch. Wireless touch perception could be a revolution for us to interact with the world. Here, we report a wireless self-sensing and haptic-reproducing electronic skin (e-skin) to realize noncontact touch communications. A flexible self-sensing actuator was developed to provide an integrated function in both tactile sensing and haptic feedback. When this e-skin was dynamically pressed, the actuator generated an induced voltage as tactile information. Via wireless communication, another e-skin could receive this tactile data and run a synchronized haptic reproduction. Thus, touch could be wirelessly conveyed in bidirections between two users as a touch intercom. Furthermore, this e-skin could be connected with various smart devices to form a touch internet of things where one-to-one and one-to-multiple touch delivery could be realized. This wireless touch presents huge potentials in remote touch video, medical care/assistance, education, and many other applications.

10.
Nano Lett ; 22(8): 3447-3456, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35411774

RESUMO

Transient power sources with excellent biocompatibility and bioresorablility have attracted significant attention. Here, we report high-performance, transient glucose enzymatic biofuel cells (TEBFCs) based on the laser-induced graphene (LIG)/gold nanoparticles (Au NPs) composite electrodes. Such LIG electrodes can be easily fabricated from polyimide (PI) with an infrared CO2 laser and exhibit a low impedance (16 Ω). The resulted TEBFC yields a high open circuit potential (OCP) of 0.77 V and a maximum power density of 483.1 µW/cm2. The TEBFC not only exhibits a quick response time that enables reaching the maximum OCP within 1 min but also owns a long lifetime over 28 days in vitro. The excellent biocompatibility and transient performance from in vitro and in vivo tests allow long-term implantation of TEBFCs in rats for energy harvesting. The TEBFCs with advanced processing methods provide a promising power solution for transient electronics.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Nanopartículas Metálicas , Animais , Eletrodos , Ouro , Lasers , Ratos
11.
Microsyst Nanoeng ; 8: 30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359613

RESUMO

Triboelectric nanogenerators (TENGs) can directly harvest energy via solid-liquid interface contact electrification, making them very suitable for harvesting raindrop energy and as active rainfall sensors. This technology is promising for realizing a fully self-powered system for autonomous rainfall monitoring combined with energy harvesting/sensing. Here, we report a raindrop energy-powered autonomous rainfall monitoring and wireless transmission system (R-RMS), in which a raindrop-TENG (R-TENG) array simultaneously serves as a raindrop energy harvester and rainfall sensor. At a rainfall intensity of 71 mm/min, the R-TENG array can generate an average short-circuit current, open-circuit voltage, and maximum output power of 15 µA, 1800 V, and 325 µW, respectively. The collected energy can be adjusted to act as a stable 2.5 V direct-current source for the whole system by a power management circuit. Meanwhile, the R-TENG array acts as a rainfall sensor, in which the output signal can be monitored and the measured data are wirelessly transmitted. Under a rainfall intensity of 71 mm/min, the R-RMS can be continuously powered and autonomously transmit rainfall data once every 4 min. This work has paved the way for raindrop energy-powered wireless hyetometers, which have exhibited broad prospects in unattended weather monitoring, field surveys, and the Internet of Things.

12.
ACS Nano ; 15(7): 11555-11563, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34128640

RESUMO

The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa-1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics.


Assuntos
Nanofibras , Dispositivos Eletrônicos Vestíveis , Humanos , Nanofibras/química , Pele , Movimento
13.
ACS Appl Mater Interfaces ; 13(22): 26084-26092, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34030444

RESUMO

Micromechanical vibration, as one of the most prevalent forms of energy in an ambient environment, has surpassing application potentials as the power source for self-powered electronics. A triboelectric nanogenerator (TENG) can effectively convert vibrational energy to electricity, which has the unique benefit of a wide-band over a traditional vibration energy harvester due to the contact electrification mechanism. Herein, the frequency band characteristics of vibrational TENG (V-TENG) were systematically elaborated. The mechanical model of V-TENG was established to explore its working mechanism for wide-band vibrational energy harvesting. By simulation analysis and experimental validation, the bandwidth dependence of V-TENG on acceleration magnitude, proof mass, stiffness, and gap distance was investigated in detail. With optimized structural parameters, an ultra-wide-band vibration energy harvester (UVEH) was developed by a tandem spring-mass structure. Within the ultra-wide-band range from 3 to 45 Hz, the UVEH can invariably illuminate 36 serial light-emitting diodes (LEDs) and charge a 33 µF capacitor to 1.5 V within 35 s. This work has quantitatively studied frequency band characteristics of V-TENG and provided a promising strategy for wide-band vibrational energy harvesting from a machine, bridge, water wave, and human motion.

14.
Nano Lett ; 20(6): 4270-4277, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412244

RESUMO

The potential screening effect of one-dimensional ZnO nanorods from carriers has been theoretically proved to severely limit its piezoelectricity, but its exact mechanism needs to be further revealed in experiments to guide the design of piezoelectric semiconductors. Here, a discretely structured design was proposed to prevent the free carriers from tunneling among adjacent ZnO nanorods for suppressing the screening effect. Piezoresponse force microscope and finite element analysis were employed in combination to uncover the underlying mechanism in experiment. Further, the output voltage of this discretely structured device was 1.62 times higher than that of the nondesigned device, which clearly authenticates this suppression behavior. Besides, this design prompts an unexpected improvement in flexibility, where the flexural modulus of this piezo-film was reduced by 35.74%. Notably, this work opens a new way to understand the potential screening effect, as expected, and to advance the development of piezo-electronics toward better piezoelectricity and more excellent flexibility.

15.
J Colloid Interface Sci ; 548: 322-332, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31028996

RESUMO

Highly microporous carbon material with nitrogen doping has been synthesized via a facile one-step approach by employing natural biowaste miscellaneous wood fibers derived hydrochar as precursor and melamine as nitrogen source respectively. The added melamine not only results in the incorporation of some nitrogen into the carbon framework but also increases the specific surface area of carbon material. Such resultant N-doped microporous carbon possesses the functionalized nitrogen doping (1.75 at. %), a large specific surface area (∼1807 m2 g-1) and abundant highly interconnected micropores. Benefiting from the synergistic effect of high specific surface area, well-developed pore size distribution and functionalized groups, this carbon material delivers a high specific capacitance of 345 F g-1 at 0.5 A g-1, an excellent capacitance retention with 270 F g-1 at up to 30 A g-1, and a remarkable cycle ability with 91.3% retention after 10,000 cycles at 5.0 A g-1. Based on it, the as-developed flexible symmetric solid-state supercapacitor delivers a high energy density of 7.92 W h kg-1 at the power density of 250 W kg-1. Evidently, this work provides a facile and cost-effective route for functionalized natural biowaste-based carbon materials and further opens up a way for highly value-added recycling of biowaste-like materials.


Assuntos
Produtos Biológicos/química , Carbono/química , Capacitância Elétrica , Nitrogênio/química , Maleabilidade , Fontes de Energia Elétrica , Técnicas Eletroquímicas/métodos , Eletrodos , Peptídeos/química , Porosidade , Propriedades de Superfície , Resíduos
16.
Nanoscale ; 11(6): 3021-3027, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30698573

RESUMO

ZnO-based heterojunction photodetectors have been widely used in various fields such as optical imaging and health monitoring. As for the traditional planar heterojunction interface, their limited optical absorption will place restrictions on the full photoelectric potential of ZnO nanorods, which severely restrains the commercial applications of ZnO-based photodetectors. Herein, using an intrinsically octahedral structure of p-type Cu2O and one-dimensional ZnO arrays, the newly designed serrate-structured heterojunction was constructed, whose unique serrate-structured interface of ZnO/Cu2O is highly conducive to the aggrandizing of optical absorption. The as-fabricated photodetector could achieve a high on/off ratio up to 1000 and an optimum photocurrent of 24.90 µA under 1.41 mW mm-2 (405 nm) illumination without bias voltage, which was 2.5 times higher than that of the planar-structured photodetector, and the response time was as quick as 1.6 ms. When the additional external strain was 0.39%, the performance was dramatically enhanced more than 5 times due to the synergism of the piezo-phototronic effect and the serrate-structured design. Based on this, we successfully developed designed photodetector arrays with an excellent optical communication performance of transmitting information. Prospectively, this kind of unique serrate-structured heterojunction design will open up a possible opportunity for high performance photodetectors based on structural engineering.

17.
Indian J Med Res ; 139(2): 273-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24718403

RESUMO

BACKGROUND & OBJECTIVES: The association between α-adducin gene G614T polymorphism and essential hypertension (EH) is not clear. The present study was carried out to examine a possible association between α-adducin gene G614T mutation and essential hypertension in Chinese population. METHODS: A total of 170 patients with essential hypertension (EH group) and 154 normotensive subjects (Control group) were genotyped for the cytoskeletal protein single nucleotide polymorphism G614T of the α-adducin gene by PCR-RFLP technique. Systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), low density lipoprotein (LDL), high-density lipoprotein (HDL), high-sensitivity C-reactive protein (hs-CRP), left atrial diameter (LA DIA), left ventricular diameter (LV DIA) and other parameters were recorded in EH group. RESULTS: There was significant association between EH and α-adducin genotypes (P<0.05). GT and TT genotypes in EH group had higher LDL levels as compared to GG carriers (P<0.05). The LDL concentration was significantly elevated in patients with GT and TT genotypes. The LDL levels also differed significantly in male patients with all the three genotypes. INTERPRETATION & CONCLUSIONS: A significant association was found between ADD1 gene G614T polymorphism and EH in Chinese patients. Further studies need to be done to confirm these findings in a large sample.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Estudos de Associação Genética , Hipertensão/genética , Lipoproteínas LDL/sangue , Adulto , Idoso , Pressão Sanguínea , Proteína C-Reativa/metabolismo , Hipertensão Essencial , Feminino , Humanos , Hipertensão/sangue , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
18.
Org Biomol Chem ; 12(7): 1044-7, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24407277

RESUMO

A KI-catalyzed oxidative coupling of benzothiazoles with aryl aldehydes has been developed using TBHP as an oxidant in neat water under metal free conditions. Various 2-aryl benzothiazoles were prepared in 36-79% yields for 28 examples. The mechanistic studies suggested that this transformation proceeded via a radical process.


Assuntos
Aldeídos/química , Benzotiazóis/química , Benzotiazóis/síntese química , Iodeto de Potássio/química , Água/química , Catálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...