Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 341: 118092, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167698

RESUMO

The sustainability of Mediterranean croplands is threatened by climate warming and rainfall reduction. The use of biochar as an amendment represents a tool to store organic carbon (C) in soil. The vulnerability of soil organic C (SOC) to the joint effects of climate change and biochar application needs to be better understood by investigating its main pools. Here, we evaluated the effects of partial rain exclusion (∼30%) and temperature increase (∼2 °C), combined with biochar amendment, on the distribution of soil organic matter (SOM) into particulate organic matter (POM) and the mineral-associated organic matter (MAOM). A set of indices suggested an increase in thermal stability in response to biochar addition in both POM and MAOM fractions. The MAOM fraction, compared to the POM, was particularly enriched in labile substances. Data from micro-Raman spectroscopy suggested that the POM fraction contained biochar particles with a more ordered structure, whereas the structural order decreased in the MAOM fraction, especially after climate manipulation. Crystalline Fe oxides (hematite) and a mix of ferrihydrite and hematite were detected in the POM and in the MAOM fraction, respectively, of the unamended plots under climate manipulation, but not under ambient conditions. Conversely, in the amended soil, climate manipulation did not induce changes in Fe speciation. Our work underlines the importance of discretely taking into account responses of both MAOM and POM to better understand the mechanistic drivers of SOC storage and dynamics.


Assuntos
Mudança Climática , Solo , Solo/química , Carvão Vegetal , Carbono , Material Particulado
2.
Environ Monit Assess ; 188(2): 102, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26787271

RESUMO

Water shortage and soil qualitative degradation are significant environmental problems in arid and semi-arid regions of the world. The increasing demand for water in agriculture and industry has resulted in the emergence of wastewater use as an alternative in these areas. Textile wastewater is produced in surplus amounts which poses threat to the environment as well as associated flora and fauna. A 60-day incubation study was performed to assess the effects of untreated textile wastewater at 0, 25, 50, 75, and 100% dilution levels on the physico-chemical and some microbial and enzymatic properties of an aridisol soil. The addition of textile wastewater provoked a significant change in soil pH and electrical conductivity and soil dehydrogenase and urease activities compared to the distilled-water treated control soil. Moreover, compared to the control treatment, soil phosphomonoesterase activity was significantly increased from 25 to 75% application rates, but decreased at 100% textile wastewater application rate. Total and available soil N contents increased significantly in response to application of textile wastewater. Despite significant increases in the soil total P contents after the addition of textile wastewater, soil available P content decreased with increasing concentration of wastewater. Changes in soil nutrient contents and related enzymatic activities suggested a dynamic match between substrate availability and soil N and P contents. Aridisols have high fixation and low P availability, application of textile wastewater to such soils should be considered only after careful assessment.


Assuntos
Irrigação Agrícola/métodos , Monitoramento Ambiental , Microbiologia do Solo , Solo/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Resíduos Industriais , Nitrogênio/análise , Fósforo/análise , Poluentes do Solo/análise , Indústria Têxtil , Têxteis
3.
Microb Ecol ; 69(4): 798-812, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724140

RESUMO

Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.


Assuntos
Florestas , Quercus/microbiologia , Quercus/fisiologia , Microbiologia do Solo , Secas , Solo/química , Espanha
4.
Bioresour Technol ; 99(7): 2141-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17624772

RESUMO

The effects of amendment with municipal solid waste compost (MSWC) and sewage sludge (SS) on acid-base properties of soil humic acids (HAs) were investigated. For this purpose, HAs were isolated from MSWC and SS and two different Portuguese soils, one sandy and the other clay loam, either unamended or amended with MSWC or SS at a rate of 60 t ha(-1), and analysed by potentiometric titrations at various ionic strengths (0.01, 0.05, 0.1 and 0.3M) over the pH range from 3.5 to 10.5. All titration data were fitted with the NICA-Donnan model and the variations of model parameters between the various HA samples were discussed. The HAs from MSWC and SS had lower acidic functional group contents and higher proton binding affinities than the control soil HAs. Amending soils with MSWC and SS determined a decrease of acidic functional group contents and an increase on proton binding affinities of soil HAs. These effects were more evident in SS-amended soil HAs than in MSWC-amended soil HAs, and in clay loam soil HA than in sandy soil HA.


Assuntos
Substâncias Húmicas/análise , Esgotos , Solo , Silicatos de Alumínio , Argila , Concentração de Íons de Hidrogênio , Prótons , Dióxido de Silício , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...