Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39012058

RESUMO

Development of the respiratory system can be affected by the use of drugs during pregnancy, as the prenatal phase is highly sensitive to pharmacological interventions, resulting in long-term consequences. The deleterious effects of external cannabinoids during gestation may be related to negative interference in central nervous system formation, cardiorespiratory system function, and behavioral disorders. Nevertheless, the impact of external cannabinoids on cardiorespiratory network development, chemosensitivity, and its future consequences in adulthood is still unclear. We evaluated the effects of prenatal exposure to a synthetic cannabinoid (WIN 55,212-2, 0.5 mg.kg-1.day-1) on the cardiorespiratory control and panic-like behavior of male and female rats in adulthood. Exogenous cannabinoid exposure during pregnancy resulted in a sex-dependent difference in breathing control. Specifically, males showed increased chemosensitivity to CO2 and O2, while females exhibited decreased sensitivity. Altered cardiovascular control was evident, with prenatally treated males and females being more susceptible to hypertension and tachycardia under adverse environmental conditions. Moreover, WIN-treated males exhibited higher fragmentation of sleep episodes, while females displayed anxiolytic and panicolytic behavioral responses to CO2. However, no changes were observed in the mechanical component of the respiratory system, and there were no neuroanatomical alterations, such as changes in the expression of CB1 receptors in the brainstem or in the quantification of catecholaminergic and serotonergic neurons. These findings highlight that external interference in cannabinoid signaling during fetal development causes sex-specific long-lasting effects for the cardiorespiratory system and behavioral responses in adulthood.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38908504

RESUMO

CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.


Assuntos
Dióxido de Carbono , Hiperventilação , Locus Cerúleo , Norepinefrina , Animais , Locus Cerúleo/metabolismo , Locus Cerúleo/efeitos dos fármacos , Feminino , Masculino , Norepinefrina/metabolismo , Camundongos , Hipercapnia/metabolismo , Camundongos Endogâmicos C57BL , Pânico/efeitos dos fármacos , Pânico/fisiologia , Modelos Animais de Doenças , Transtorno de Pânico/metabolismo , Transtorno de Pânico/induzido quimicamente , Transtorno de Pânico/fisiopatologia , Camundongos Knockout , Caracteres Sexuais
3.
Sci Rep ; 14(1): 12262, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806563

RESUMO

Exercise elicits physiological adaptations, including hyperpnea. However, the mechanisms underlying exercise-induced hyperpnea remain unresolved. Skeletal muscle acts as a secretory organ, releasing irisin (IR) during exercise. Irisin can cross the blood-brain barrier, influencing muscle and tissue metabolism, as well as signaling in the central nervous system (CNS). We evaluated the effect of intracerebroventricular or intraperitoneal injection of IR in adult male rats on the cardiorespiratory and metabolic function during sleep-wake cycle under room air, hypercapnia and hypoxia. Central IR injection caused an inhibition on ventilation (VE) during wakefulness under normoxia, while peripheral IR reduced VE during sleep. Additionally, central IR exacerbates hypercapnic hyperventilation by increasing VE and reducing oxygen consumption. As to cardiovascular regulation, central IR caused an increase in heart rate (HR) across all conditions, while no change was observed following peripheral administration. Finally, central IR attenuated the hypoxia-induced regulated hypothermia and increase sleep episodes, while peripheral IR augmented CO2-induced hypothermia, during wakefulness. Overall, our results suggest that IR act mostly on CNS exerting an inhibitory effect on breathing under resting conditions, while stimulating the hypercapnic ventilatory response and increasing HR. Therefore, IR seems not to be responsible for the exercise-induced hyperpnea, but contributes to the increase in HR.


Assuntos
Fibronectinas , Condicionamento Físico Animal , Animais , Masculino , Ratos , Fibronectinas/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Frequência Cardíaca , Sono/fisiologia , Vigília/fisiologia , Consumo de Oxigênio , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Respiração , Miocinas
4.
Acta Physiol (Oxf) ; 240(7): e14162, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38741523

RESUMO

AIM: In cyclic climate variations, including seasonal changes, many animals regulate their energy demands to overcome critical transitory moments, restricting their high-demand activities to phases of resource abundance, enabling rapid growth and reproduction. Tegu lizards (Salvator merianae) are ectotherms with a robust annual cycle, being active during summer, hibernating during winter, and presenting a remarkable endothermy during reproduction in spring. Here, we evaluated whether changes in mitochondrial respiratory physiology in skeletal muscle could serve as a mechanism for the increased thermogenesis observed during the tegu's reproductive endothermy. METHODS: We performed high-resolution respirometry and calorimetry in permeabilized red and white muscle fibers, sampled during summer (activity) and spring (high activity and reproduction), in association with citrate synthase measurements. RESULTS: During spring, the muscle fibers exhibited increased oxidative phosphorylation. They also enhanced uncoupled respiration and heat production via adenine nucleotide translocase (ANT), but not via uncoupling proteins (UCP). Citrate synthase activity was higher during the spring, suggesting greater mitochondrial density compared to the summer. These findings were consistent across both sexes and muscle types (red and white). CONCLUSION: The current results highlight potential cellular thermogenic mechanisms in an ectothermic reptile that contribute to transient endothermy. Our study indicates that the unique feature of transitioning to endothermy through nonshivering thermogenesis during the reproductive phase may be facilitated by higher mitochondrial density, function, and uncoupling within the skeletal muscle. This knowledge contributes significant elements to the broader picture of models for the evolution of endothermy, particularly in relation to the enhancement of aerobic capacity.


Assuntos
Lagartos , Músculo Esquelético , Reprodução , Animais , Lagartos/fisiologia , Lagartos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Reprodução/fisiologia , Termogênese/fisiologia , Feminino , Masculino , Estações do Ano , Mitocôndrias Musculares/metabolismo , Metabolismo Energético/fisiologia
5.
Respir Physiol Neurobiol ; 326: 104269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38688432

RESUMO

The neural control of breathing exhibits sex differences. There is now a large effort to account for biological sex in mammalian research, but the degree to which ectothermic vertebrates exhibit sex differences in the central control of breathing is not well-established. Therefore, we compared respiratory-related neural activity in brainstem-spinal cord preparations from female and male bullfrogs to determine if important aspects of the central control of breathing vary with sex. We found that the breathing pattern was similar across males and females, but baseline frequency of the respiratory network was faster in females. The magnitude of the central response to hypercapnia was similar across sexes, but the time to reach maximum burst rate occurred more slowly in females. These results suggest that sex differences may account for variation in traits associated with the control of breathing and that future work should carefully account for sex of the animal in analysis.


Assuntos
Rana catesbeiana , Respiração , Caracteres Sexuais , Medula Espinal , Animais , Feminino , Masculino , Rana catesbeiana/fisiologia , Medula Espinal/fisiologia , Tronco Encefálico/fisiologia , Hipercapnia/fisiopatologia
6.
J Alzheimers Dis ; 95(1): 317-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522205

RESUMO

BACKGROUND: Neuroinflammation in Alzheimer's disease (AD) can occur due to excessive activation of microglia in response to the accumulation of amyloid-ß peptide (Aß). Previously, we demonstrated an increased expression of this peptide in the locus coeruleus (LC) in a sporadic model for AD (streptozotocin, STZ; 2 mg/kg, ICV). We hypothesized that the STZ-AD model exhibits neuroinflammation, and treatment with an inhibitor of microglia (minocycline) can reverse the cognitive, respiratory, sleep, and molecular disorders of this model. OBJECTIVE: To evaluate the effect of minocycline treatment in STZ model disorders. METHODS: We treated control and STZ-treated rats for five days with minocycline (30 mg/kg, IP) and evaluated cognitive performance, chemoreflex response to hypercapnia and hypoxia, and total sleep time. Additionally, quantification of Aß, microglia analyses, and relative expression of cytokines in the LC were performed. RESULTS: Minocycline treatment improved learning and memory, which was concomitant with a decrease in microglial cell density and re-establishment of morphological changes induced by STZ in the LC region. Minocycline did not reverse the STZ-induced increase in CO2 sensitivity during wakefulness. However, it restored the daytime sleep-wake cycle in STZ-treated animals to the same levels as those observed in control animals. In the LC, levels of A and expression of Il10, Il1b, and Mcp1 mRNA remained unaffected by minocycline, but we found a strong trend of minocycline effect on Tnf- α. CONCLUSION: Our findings suggest that minocycline effectively reduces microglial recruitment and the inflammatory morphological profile in the LC, while it recovers cognitive performance and restores the sleep-wake pattern impaired by STZ.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Transtornos do Sono-Vigília , Ratos , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Minociclina/efeitos adversos , Doenças Neuroinflamatórias , Estreptozocina , Transtornos do Sono-Vigília/complicações , Sono , Cognição/fisiologia , Modelos Animais de Doenças , Aprendizagem em Labirinto , Disfunção Cognitiva/metabolismo
7.
Respir Physiol Neurobiol ; 314: 104093, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331419

RESUMO

Global warming poses serious implications to animal physiology and a gradual increase in ambient temperature affects all living organisms, particularly fast-growing selected species. We recorded ventilation (V̇E), body temperature (TB), oxygen consumption (V̇O2) and respiratory equivalent (V̇E/V̇O2) of 14-day-old (14d) male and female chicks at room air conditions, hypercapnia and hypoxia at heat stress (HS, 32 °C). These chicks had previously been exposed to control (CI, 37.5 °C) and high (HI, 39 °C) temperatures during the first 5 days of incubation. Under resting conditions, acute HS increased V̇E in HI females but not in HI males. Hypercapnia combined with heat promoted a potentiation of CO2-hyperventilatory response in HI females when compared with thermoneutral condition, whereas in HI incubated males a hypoventilation under hypercapnia and heat stress was observed compared to the CI group. Hypoxia associated with heat stress increased V̇E only in HI females. Our data indicates that females are more sensitive to thermal manipulation during incubation and it seems that the thermal embryonic manipulation, at least during the first days of development, does not improve the adaptive response of chicks to heat stress.


Assuntos
Hipercapnia , Respiração , Animais , Masculino , Feminino , Temperatura , Temperatura Alta , Galinhas , Hipóxia , Resposta ao Choque Térmico
8.
Br J Pharmacol ; 180(13): 1766-1789, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36710256

RESUMO

BACKGROUND AND PURPOSE: Cannabis legalization has risen in many countries, and its use during pregnancy has increased. The endocannabinoid system is present in the CNS at early stages of embryonic development, and regulates functional brain maturation including areas responsible for respiratory control, data on the influence of external cannabinoids on the development of the respiratory system and possible consequences during postnatal life are limited. EXPERIMENTAL APPROACH: We evaluated the effects of prenatal exposure to synthetic cannabinoid (WIN 55,212-2 [WIN], 0.5 mg·kg-1 ·day-1 ) on the respiratory control system in neonatal (P0, P6-7 and P12-13) and juvenile (P27-28) male and female rats. KEY RESULTS: WIN administration to pregnant rats interfered sex-specifically with breathing regulation of offspring, promoting a greater sensitivity to CO2 at all ages in males (except P6-7) and in juvenile females. An altered hypoxic chemoreflex was observed in P0 (hyperventilation) and P6-7 (hypoventilation) males, which was absent in females. Along with breathing alterations, brainstem analysis showed an increase in the number of catecholaminergic neurons and cannabinoid receptor type 1 (CB1 ) and changes in tissue respiration in the early males. A reduction in pulmonary compliance was observed in juvenile male rats. Preexposure to WIN enhanced spontaneous apnoea and reduced the number of serotoninergic (5-HT) neurons in the raphe magnus nucleus of P0 females. CONCLUSIONS AND IMPLICATIONS: These data demonstrate that excess stimulation of the endocannabinoid system during gestation has prolonged and sex-specific consequences for the respiratory control system.


Assuntos
Canabinoides , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Ratos , Animais , Masculino , Feminino , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides , Benzoxazinas/farmacologia , Fatores Etários , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
9.
Neurosci Lett ; 795: 137014, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36521643

RESUMO

Benzodiazepines, such as diazepam (DZP), are used to treat anxiety disorders, and are prescribed to pregnant woman for therapeutic purposes. Concerns regarding their consequences on postnatal development rise as they cross the placenta and interact with the embryo. Occurrence of malformation and behavioral syndromes have been reported for different ages, but little is known about their effects on the brain after exposure during intrauterine life. Thus, we sought to evaluate the effects of intrauterine exposure to DZP on the number of brainstem's catecholaminergic and serotonergic neurons, implicated in respiratory control, in male and female rats on postnatal (P) day 12-13, using immunofluorescence labeling for tyrosine-hydroxylase (TH) and serotonin (5-HT). We observed a reduction in the number of catecholaminergic neurons for males and females. Special attention is given to the reduction in the density of neurons in the A6 region, involved in ventilatory responses to CO2. Interestingly, only males showed a reduction in the number of serotonergic neurons, while females were not affected. These findings suggest that in utero exposure to DZP results in deleterious neuroanatomical effects on P12-13 rats and raises a note of concern for women clinicians to make more informed choices about the use of anxiolytic treatments during gestation.


Assuntos
Ansiolíticos , Diazepam , Gravidez , Ratos , Animais , Feminino , Masculino , Diazepam/farmacologia , Neurônios Serotoninérgicos , Benzodiazepinas/farmacologia , Ansiolíticos/farmacologia , Encéfalo , Serotonina/farmacologia
10.
J Therm Biol ; 109: 103317, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195384

RESUMO

We evaluated ventilation (V˙E), body temperature (TB), oxygen consumption (V˙ O2), respiratory equivalent (V˙E/ V˙ O2), and monoamine concentrations of 14-day-old (14d) male and female chicks from eggs incubated at low (LT, 36 °C), control (CT, 37.5 °C) and high (HT, 39 °C) temperature during the early embryonic phase, to normoxia, hypercapnia and hypoxia under exposure to cold environment (20 °C). At normoxia, acute cold exposure did not affect the ventilatory variables, with the exception of HT males, in which cold prevented the reduced V˙E observed under thermoneutral conditions. Exposure to 20 °C caused a decrease in TB in both sexes, and LT and HT females presented a greater hypothermic response. Hypercapnia combined with cold did not alter the ventilatory variables, but LT females and CT males and females showed a blunted CO2-induced hyperventilation due to a higher V˙ O2, compared to the same groups in thermoneutral conditions. Unlike with thermoneutral conditions, the blunted hypercapnic hyperventilation observed in the HT groups was not observed during cold challenge. CO2 exposure promoted a similar decrease in TB in the thermoneutral and acutely cold exposed groups, while LT females under cold condition presented a blunted hypothermic response. During hypoxia, cold challenge attenuated the increase in V˙E in LT females and HT males, due to changes in VT. Hypoxic metabolic depression was greater in LT females and males and HT males during cold exposure, while no change in V˙E/ V˙ O2 was observed. The only alteration in monoaminergic concentration under cold challenge was an increase in brainstem 5-HIAA and 5-HIAA/5-HT ratio in HT females, and an enhanced 5-HT concentration in HT males. In summary, thermal manipulation during embryogenesis induces 14d old chicks to respond differently to cold stress with LT females and HT males being more sensitive.


Assuntos
Hipercapnia , Hipotermia , Animais , Encéfalo/metabolismo , Dióxido de Carbono , Galinhas/fisiologia , Feminino , Ácido Hidroxi-Indolacético , Hipercapnia/metabolismo , Hiperventilação , Hipóxia , Masculino , Consumo de Oxigênio/fisiologia , Serotonina/metabolismo
11.
Brain Struct Funct ; 227(8): 2667-2679, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36109371

RESUMO

Orexinergic (OX) neurons in the lateral hypothalamus (LH), perifornical area (PFA) and dorsomedial hypothalamus (DMH) play a role in the hypercapnic ventilatory response, presumably through direct inputs to central pattern generator sites and/or through interactions with other chemosensitive regions. OX neurons can produce and release orexins, excitatory neuropeptides involved in many functions, including physiological responses to changes in CO2/pH. Thus, in the present study, we tested the hypothesis that different nuclei (LH, PFA and DMH) where the orexinergic neurons are located, show distinct activation by CO2 during the light-dark cycle phases. For this purpose, we evaluated the Fos and OXA expression by immunohistochemistry to identify neurons that co-localize Fos + OXA in the LH, LPeF, MPeF and DMH in the light-inactive and dark-active phase in Wistar rats subjected to 3 h of normocapnia or hypercapnia (7% CO2). Quantitative analyses of immunoreactive neurons show that hypercapnia caused an increase in the number of neurons expressing Fos in the LH, LPeF, MPeF and DMH in the light and dark phases. In addition, the number of Fos + OXA neurons increased in the LPeF and DMH independently of the phases of the diurnal cycle; whereas in the MPeF, this increase was observed exclusively in the light phase. Thus, we suggest that OX neurons are selectively activated by hypercapnia throughout the diurnal cycle, reinforcing the differential role of nuclei in the hypothalamus during central chemosensitivity.


Assuntos
Dióxido de Carbono , Ritmo Circadiano , Hipotálamo , Animais , Ratos , Dióxido de Carbono/metabolismo , Hipercapnia/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar
12.
Compr Physiol ; 12(4): 3869-3988, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997081

RESUMO

The ectothermic vertebrates are a diverse group that includes the Fishes (Agnatha, Chondrichthyes, and Osteichthyes), and the stem Tetrapods (Amphibians and Reptiles). From an evolutionary perspective, it is within this group that we see the origin of air-breathing and the transition from the use of water to air as a respiratory medium. This is accompanied by a switch from gills to lungs as the major respiratory organ and from oxygen to carbon dioxide as the primary respiratory stimulant. This transition first required the evolution of bimodal breathing (gas exchange with both water and air), the differential regulation of O2 and CO2 at multiple sites, periodic or intermittent ventilation, and unsteady states with wide oscillations in arterial blood gases. It also required changes in respiratory pump muscles (from buccopharyngeal muscles innervated by cranial nerves to axial muscles innervated by spinal nerves). The question of the extent to which common mechanisms of respiratory control accompany this progression is an intriguing one. While the ventilatory control systems seen in all extant vertebrates have been derived from common ancestors, the trends seen in respiratory control in the living members of each vertebrate class reflect both shared-derived features (ancestral traits) as well as unique specializations. In this overview article, we provide a comprehensive survey of the diversity that is seen in the afferent inputs (chemo and mechanoreceptor), the central respiratory rhythm generators, and the efferent outputs (drive to the respiratory pumps and valves) in this group. © 2022 American Physiological Society. Compr Physiol 12: 1-120, 2022.


Assuntos
Respiração , Vertebrados , Animais , Vertebrados/fisiologia
13.
Exp Physiol ; 107(11): 1298-1311, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35930596

RESUMO

NEW FINDINGS: What is the central question of this study? Melanin-concentrating hormone (MCH) suppresses the hypercapnic chemoreflex: what is the mechanism by which this effect is produced? What is the main finding and its importance? MCH acting in the lateral hypothalamic area but not in the locus coeruleus in rats, in the light period, attenuates the hypercapnic chemoreflex. The data provide new insight into the role of MCH in the modulation of the hypercapnic ventilatory response. ABSTRACT: Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide involved in a broad range of homeostatic functions including regulation of the hypercapnic chemoreflex. We evaluated whether MCH modulates the hypercapnic ventilatory response by acting in the lateral hypothalamic area (LHA) and/or in the locus coeruleus (LC). Here, we measured pulmonary ventilation ( V ̇ E ${\dot V_{\rm{E}}}$ ), body temperature, electroencephalogram (EEG) and electromyogram (EMG) of unanaesthetized adult male Wistar rats before and after microinjection of MCH (0.4 mM) or MCH receptor 1 (MCH1-R) antagonist (SNAP-94847; 63 mM) into the LHA and LC, in room air and 7% CO2 conditions during wakefulness and sleep in the dark and light periods. MCH intra-LHA caused a decreased CO2 ventilatory response during wakefulness and sleep in the light period, while SNAP-94847 intra-LHA increased this response, during wakefulness in the light period. In the LC, MCH or the MCH1-R antagonist caused no change in the hypercapnic ventilatory response. Our results suggest that MCH, in the LHA, exerts an inhibitory modulation of the hypercapnic ventilatory response during the light-inactive period in rats.


Assuntos
Região Hipotalâmica Lateral , Hormônios Hipotalâmicos , Masculino , Ratos , Animais , Dióxido de Carbono , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Hipercapnia
14.
Front Physiol ; 13: 892828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910562

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) channels are sensitive to warm ambient temperatures (Tas), triggering heat loss responses in adult rats in a Tas range of ∼26-30°C. In birds, however, the thermoregulatory role of TRPV4 has never been shown. Here, we hypothesized that stimulation of TRPV4 induces thermolytic responses for body temperature (Tb) maintenance in birds, and that this function is already present in early life, when the Ta range for TRPV4 activation does not represent a warm condition for these animals. We first demonstrated the presence of TRPV4 in the dorsal and ventral skin of chickens (Gallus gallus domesticus) by immunohistochemistry. Then, we evaluated the effects of the TRPV4 agonist, RN1747, and the TRPV4 antagonists, HC067047 and GSK2193874, on Tb and thermoeffectors at different Tas in 5-day-old chicks and 60-day-old adult chickens. For the chicks, RN1747 transiently reduced Tb both in thermoneutrality (31°C) and in a cold Ta for this phase (26°C), which relied on huddling behavior inhibition. The TRPV4 antagonists alone did not affect Tb or thermoeffectors but blocked the Tb decrease and huddling inhibition promoted by RN1747. For the adults, TRPV4 antagonism increased Tb when animals were exposed to 28°C (suprathermoneutral condition for adults), but not to 19°C. In contrast, RN1747 decreased Tb by reducing metabolic rate and activating thermal tachypnea at 19°C, a Ta below the activation range of TRPV4. Our results indicate that peripheral TRPV4 receptors are functional in early life, but may be inhibited at that time when the range of activation (∼26-30°C) represents cold Ta for chicks, and become physiologically relevant for Tb maintenance when the activation Ta range for TRPV4 becomes suprathermoneutral for adult chickens.

15.
Pflugers Arch ; 474(11): 1185-1200, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35871663

RESUMO

Pregnancy is highly affected by anxiety disorders, which may be treated with benzodiazepines, especially diazepam (DZP), that can cross the placental barrier and interact with the fetal GABAergic system. We tested whether prenatal exposure to DZP promotes sex-specific postnatal changes in the respiratory control of rats. We evaluated ventilation ([Formula: see text]) and oxygen consumption ([Formula: see text] O2) in resting conditions and under hypercapnia (7% CO2) and hypoxia (10% O2) in newborn [postnatal day (P) 0-1 and P12-13)] and young (P21-22) rats from mothers treated with DZP during pregnancy. We also analyzed brainstem monoamines at the same ages. DZP exposure had minimal effects on room air-breathing variables in females, but caused hypoventilation (drop in [Formula: see text]/[Formula: see text] O2) in P12-13 males, lasting until P21-22. The hypercapnic ventilatory response was attenuated in P0-1 and P12-13 DZP-treated females mainly by a decrease in tidal volume (VT), whereas males had a reduction in respiratory frequency (fR) at P12-13. Minor changes were observed in hypoxia, but an attenuation in [Formula: see text] was seen in P12-13 males. In the female brainstem, DZP increased dopamine concentration and decreased 5-hydroxyindole-3-acetic acid (5-HIAA) and the 3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine ratio at P0-1, and reduced DOPAC concentration at P12-13. In males, DZP decreased brainstem noradrenaline at P0-1. Our results demonstrate that prenatal DZP exposure reduces CO2 chemoreflex only in postnatal females and does not affect hypoxia-induced hyperventilation in both sexes. In addition, prenatal DZP alters brainstem monoamine concentrations throughout development differently in male and female rats.


Assuntos
Dióxido de Carbono , Diazepam , Ácido 3,4-Di-Hidroxifenilacético , Acetatos , Animais , Diazepam/farmacologia , Dopamina , Feminino , Ácido Hidroxi-Indolacético , Hipercapnia , Hipóxia , Masculino , Norepinefrina , Placenta , Gravidez , Ratos
16.
J Appl Physiol (1985) ; 133(2): 371-389, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708704

RESUMO

Serotonin (5-HT) is an important modulator of brain networks that control breathing. The selective serotonin reuptake inhibitor fluoxetine (FLX) is the first-line antidepressant drug prescribed during pregnancy. We investigated the effects of prenatal FLX exposure on baseline breathing, ventilatory and metabolic responses to hypercapnia and hypoxia as well as number of brainstem 5-HT and tyrosine hydroxylase (TH) neurons of rats during postnatal development (P0-82). Prenatal FLX exposure of males showed a lower baseline V̇e that appeared in juveniles and remained in adulthood, with no sleep-wake state dependency. Prenatal FLX exposure of females did not affect baseline breathing. Juvenile male FLX showed increased CO2 and hypoxic ventilatory responses, normalizing by adulthood. Alterations in juvenile FLX-treated males were associated with a greater number of 5-HT neurons in the raphe obscurus (ROB) and raphe magnus (RMAG). Adult FLX-exposed males showed greater number of 5-HT neurons in the raphe pallidus (RPA) and TH neurons in the A5, whereas reduced number of TH neurons in A7. Prenatal FLX exposure of female rats was associated with greater hyperventilation induced by hypercapnia at P0-2 and juveniles, whereas P12-14 and adult FLX (non-rapid eye movement, NREM sleep) rats showed an attenuation of the hyperventilation induced by CO2. FLX-exposed females had fewer 5-HT neurons in the RPA and reduced TH A6 density at P0-2; and greater number of TH neurons in the A7 at P12-14. These data indicate that prenatal FLX exposure affects the number of some monoaminergic regions in the brain and results in long-lasting, sex-specific changes in baseline breathing pattern and ventilatory responses to respiratory challenges.NEW & NOTEWORTHY Selective serotonin reuptake inhibitors (SSRIs) readily cross the placental and the fetal blood-brain barrier where it will affect 5-HT levels in the developing brain. Although SSRI is used during pregnancy, there are no studies showing SSRI exposure during late pregnancy and postnatal effects on breathing control in males and females. We demonstrated that fluoxetine exposure during late pregnancy in rats was associated with long-lasting, sex-specific effects on breathing and brainstem monoaminergic groups.


Assuntos
Fluoxetina , Efeitos Tardios da Exposição Pré-Natal , Animais , Dióxido de Carbono , Feminino , Fluoxetina/farmacologia , Humanos , Hipercapnia , Hiperventilação , Masculino , Placenta/metabolismo , Gravidez , Ratos , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
17.
Front Physiol ; 12: 726440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690802

RESUMO

Amphibians may be more vulnerable to climate-driven habitat modification because of their complex life cycle dependence on land and water. Considering the current rate of global warming, it is critical to identify the vulnerability of a species by assessing its potential to acclimate to warming temperatures. In many species, thermal acclimation provides a reversible physiological adjustment in response to temperature changes, conferring resilience in a changing climate. Here, we investigate the effects of temperature acclimation on the physiological performance of tadpoles of a stream-breeding savanna tree frog (Bokermannohyla ibitiguara) in relation to the thermal conditions naturally experienced in their microhabitat (range: 18.8-24.6°C). We quantified performance measures such as routine and maximum metabolic rate at different test (15, 20, 25, 30, and 34°C) and acclimation temperatures (18 and 25°C). We also measured heart rate before and after autonomic blockade with atropine and sotalol at the respective acclimation temperatures. Further, we determined the critical thermal maximum and warming tolerance (critical thermal maximum minus maximum microhabitat temperature), which were not affected by acclimation. Mass-specific routine and mass-specific maximum metabolic rate, as well as heart rate, increased with increasing test temperatures; however, acclimation elevated mass-specific routine metabolic rate while not affecting mass-specific maximum metabolic rate. Heart rate before and after the pharmacological blockade was also unaffected by acclimation. Aerobic scope in animals acclimated to 25°C was substantially reduced, suggesting that physiological performance at the highest temperatures experienced in their natural habitat is compromised. In conclusion, the data suggest that the tadpoles of B. ibitiguara, living in a thermally stable environment, have a limited capacity to physiologically adjust to the highest temperatures found in their micro-habitat, making the species more vulnerable to future climate change.

18.
Front Physiol ; 12: 699142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220555

RESUMO

The first third of incubation is critical for embryonic development, and environmental changes during this phase can affect the physiology and survival of the embryos. We evaluated the effects of low (LT), control (CT), and high (HT) temperatures during the first 5 days of incubation on ventilation ( V . E ), body temperature (Tb), oxygen consumption ( V . O2), respiratory equivalent ( V . E / V . O2), and brain monoamines on 3-days-old (3d) and 14-days-old (14d) male and female chickens. The body mass of LT animals of both ages and sexes was higher compared to HT and CT animals (except for 3d males). The heart mass of 14d HT animals was higher than that of CT animals. Thermal manipulation did not affect V . E , V . O2 or V . E / V . O2 of 3d animals in normoxia, except for 3d LT males V . E , which was lower than CT. Regarding 14d animals, the HT females showed a decrease in V . E and V . O2 compared to CT and LT groups, while the HT males displayed a lower V . O2 compared to CT males, but no changes in V . E / V . O2. Both sexes of 14d HT chickens presented a greater Tb compared to CT animals. Thermal manipulations increased the dopamine turnover in the brainstem of 3d females. No differences were observed in ventilatory and metabolic parameters in the 3d animals of either sexes, and 14d males under 7% CO2. The hypercapnic hyperventilation was attenuated in the 14d HT females due to changes in V . O2, without alterations in V . E . The 14d LT males showed a lower V . E , during hypercapnia, compared to CT, without changes in V . O2, resulting in an attenuation in V . E / V . O2. During hypoxia, 3d LT females showed an attenuated hyperventilation, modulated by a higher V . O2. In 14d LT and HT females, the increase in V . E was greater and the hypometabolic response was attenuated, compared to CT females, which resulted in no change in the V . E / V . O2. In conclusion, thermal manipulations affect hypercapnia-induced hyperventilation more so than hypoxic challenge, and at both ages, females are more affected by thermal manipulation than males.

19.
Respir Physiol Neurobiol ; 293: 103717, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34119703

RESUMO

Air-breathing vertebrates undergo respiratory adjustments when faced with disturbances in the gas composition of the environment. In mammals, the medullary raphe nuclei are involved in the neuronal pathway that mediates the ventilatory responses to hypoxia and hypercarbia. We investigate whether the serotoninergic neurons of the medullary raphe nuclei of toads (Rhinella diptycha) play a functional role in respiratory control during resting conditions (room air), hypercarbia (5% CO2), and hypoxia (5% O2). The raphe nuclei were located and identified based on the location of the serotoninergic neurons in the brainstem. We then lesioned the medullary raphe (raphe pallidus, obscurus and magnus) with anti-SERT-SAP and measured ventilation in both control and lesioned groups and we observed that serotonin (5-HT) specific chemical lesions of the medullary raphe caused reduced respiratory responses to both hypercarbia and hypoxia. In summary, we report that the serotoninergic neurons of the medullary raphe of the cururu toad Rhinella diptycha participate in the chemoreflex responses during hypercarbia and hypoxia, but not during resting conditions. This current evidence in anurans, together with the available data in mammals, brings insights to the evolution of brain sites, such as the medullary raphe, involved in the ventilatory chemoreflex in vertebrates.


Assuntos
Bulbo/fisiologia , Ventilação Pulmonar/fisiologia , Núcleos da Rafe/fisiologia , Respiração , Neurônios Serotoninérgicos/fisiologia , Animais , Anuros , Feminino , Masculino
20.
J Exp Biol ; 224(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33914034

RESUMO

In pre-metamorphic tadpoles, the neural network generating lung ventilation is present but actively inhibited; the mechanisms leading to the onset of air breathing are not well understood. Orexin (ORX) is a hypothalamic neuropeptide that regulates several homeostatic functions, including breathing. While ORX has limited effects on breathing at rest, it potentiates reflexive responses to respiratory stimuli mainly via ORX receptor 1 (OX1R). Here, we tested the hypothesis that OX1Rs facilitate the expression of the motor command associated with air breathing in pre-metamorphic bullfrog tadpoles (Lithobates catesbeianus). To do so, we used an isolated diencephalic brainstem preparation to determine the contributions of OX1Rs to respiratory motor output during baseline breathing, hypercapnia and hypoxia. A selective OX1R antagonist (SB-334867; 5-25 µmol l-1) or agonist (ORX-A; 200 nmol l-1 to 1 µmol l-1) was added to the superfusion media. Experiments were performed under basal conditions (media equilibrated with 98.2% O2 and 1.8% CO2), hypercapnia (5% CO2) or hypoxia (5-7% O2). Under resting conditions gill, but not lung, motor output was enhanced by the OX1R antagonist and ORX-A. Hypercapnia alone did not stimulate respiratory motor output, but its combination with SB-334867 increased lung burst frequency and amplitude, lung burst episodes, and the number of bursts per episode. Hypoxia alone increased lung burst frequency and its combination with SB-334867 enhanced this effect. Inactivation of OX1Rs during hypoxia also increased gill burst amplitude, but not frequency. In contrast with our initial hypothesis, we conclude that ORX neurons provide inhibitory modulation of the CO2 and O2 chemoreflexes in pre-metamorphic tadpoles.


Assuntos
Pulmão , Respiração , Animais , Larva , Orexinas , Rana catesbeiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...