Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542668

RESUMO

BACKGROUND: The Mediterranean Diet (MedDiet) is the dietary pattern par excellence for managing and preventing metabolic diseases, such as Type 2 Diabetes (T2DM). The MedDiet incorporates spices and aromatic herbs, which are abundant sources of bioactive compounds. The aim of this study was to analyze the effect of all aromatic herbs and spices included in the MedDiet, such as black cumin, clove, parsley, saffron, thyme, ginger, black pepper, rosemary, turmeric, basil, oregano, and cinnamon, on the glycemic profile in T2DM subjects. METHODS: PubMed, Web of Science, and Scopus databases were searched for interventional studies investigating the effect of these aromatic herbs and spices on the glycemic profile in T2DM subjects. RESULTS: This systematic review retrieved 6958 studies, of which 77 were included in the qualitative synthesis and 45 were included in the meta-analysis. Our results showed that cinnamon, turmeric, ginger, black cumin, and saffron significantly improved the fasting glucose levels in T2DM subjects. The most significant decreases in fasting glucose were achieved after supplementation with black cumin, followed by cinnamon and ginger, which achieved a decrease of between 27 and 17 mg/dL. CONCLUSIONS: Only ginger and black cumin reported a significant improvement in glycated hemoglobin, and only cinnamon and ginger showed a significant decrease in insulin.


Assuntos
Crocus , Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Zingiber officinale , Humanos , Especiarias/análise , Glucose
2.
Front Med (Lausanne) ; 10: 1191026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484851

RESUMO

Introduction: Previous research has indicated that the COVID-19 outbreak had a negative impact on the diagnosis and management of cardiometabolic diseases. Our aim was to analyze the impact of the COVID-19 pandemic on the management of dyslipidemia and type 2 diabetes (T2D) in the Aragon region of Spain. Methods: We conducted an observational retrospective study, which included data from all patients diagnosed with active T2D or dyslipidemia in Aragon during 2019-2021. Data was collected from the BIGAN platform, a big database that includes all healthcare data from the Aragon population. Clinical, biochemical, and pharmacological prescription information was obtained for each patient and for each year. Results: Out of the total population of 1,330,000 in the Aragon region, 90,000 subjects were diagnosed with T2D each year, resulting in a prevalence of approximately 7%. The COVID-19 pandemic resulted in a decrease in the prevalence of this disease and a lower incidence during the year 2020. In addition, patients with T2D experienced a deterioration of their glucose profile, which led to an increase in the number of patients requiring pharmacological therapy. The prevalence of dyslipidemia was approximately 23.5% in both 2019 and 2020 and increased to 24.5% in 2021. Despite the worsening of the anthropometric profile, the lipid profile improved significantly throughout 2020 and 2021 compared to 2019. Moreover, the number of active pharmacological prescriptions increased significantly in 2021. Discussion: Our findings suggest that the overload of the health system caused by the COVID-19 pandemic has resulted in an underdiagnosis of T2D. Moreover, patients with T2D experienced a worsening of their glycemic profile, an increase in their pharmacological requirements, and lower performance of their analytical determinations. Dyslipidemic subjects improved their lipid profile although the value of lipid profile determination decreased between 2020 and 2021.

3.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408945

RESUMO

Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Scrapie , Animais , Encéfalo/metabolismo , Gliose/patologia , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Priônicas/metabolismo , Scrapie/metabolismo , Ovinos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Transcriptoma
4.
Vet Microbiol ; 203: 294-300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28619160

RESUMO

Ovine scrapie is a worldwide spread prion disease that is transmitted horizontally under field conditions. Placenta from scrapie-infected ewes is an important source of infection, since this tissue can accumulate high amounts of PrPSc depending on the foetal genotype. Therefore, placentas carrying susceptible foetuses can accumulate PrPSc but there is not PrPSc accumulation in presence of foetuses with at least one ARR haplotype. In scrapie eradication programs, ARR/ARR males are used for breeding to increase the resistant progeny and reduce the horizontal transmission of the disease through the placenta. The development of highly sensitive techniques, that allow the detection of minimal amounts of PrPSc, has caused many secretions/excretions and tissues that had previously been deemed negative to be relabeled as positive for PrPSc. This has raised concerns about the possible presence of minimal amounts of PrPSc in placentas from ARR foetuses that conventional techniques had indicated were negative. In the present study we examined 30 placentas from a total of 23 gestations; 15 gestations resulted from naturally ARQ/ARQ scrapie-infected ewes mated with ARR/ARR rams. The absence of PrPSc in placentas carrying the foetal ARR haplotype (n=19) was determined by IDEXX HerdChek scrapie/BSE Antigen EIA Test, Prionics®-Check WESTERN and corroborated by the highly sensitive Protein Misfolding Cyclic Amplification technique (PMCA). By immunohistochemistry, several unspecific stainings that might mislead a diagnosis were observed. The results of the present study support that using ARR/ARR males in scrapie eradication programs efficiently decreases the spreading of the agent in the environment via shed placentas.


Assuntos
Transmissão Vertical de Doenças Infecciosas/veterinária , Proteínas PrPSc/metabolismo , Príons/metabolismo , Scrapie/metabolismo , Animais , Feminino , Feto , Genótipo , Haplótipos , Imuno-Histoquímica/veterinária , Masculino , Placenta/metabolismo , Gravidez , Dobramento de Proteína , Scrapie/transmissão , Ovinos
5.
PLoS Pathog ; 12(5): e1005623, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27227882

RESUMO

Synaptic pathology is an early feature of prion as well as other neurodegenerative diseases. Although the self-templating process by which prions propagate is well established, the mechanisms by which prions cause synaptotoxicity are poorly understood, due largely to the absence of experimentally tractable cell culture models. Here, we report that exposure of cultured hippocampal neurons to PrPSc, the infectious isoform of the prion protein, results in rapid retraction of dendritic spines. This effect is entirely dependent on expression of the cellular prion protein, PrPC, by target neurons, and on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic loss. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents.


Assuntos
Técnicas de Cultura de Células/métodos , Espinhas Dendríticas/patologia , Proteínas PrPSc/toxicidade , Animais , Western Blotting , Modelos Animais de Doenças , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Doenças Priônicas/patologia , Sinapses/patologia
6.
J Virol ; 89(24): 12362-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423950

RESUMO

UNLABELLED: Transmission of chronic wasting disease (CWD) between cervids is influenced by the primary structure of the host cellular prion protein (PrP(C)). In white-tailed deer, PRNP alleles encode the polymorphisms Q95 G96 (wild type [wt]), Q95 S96 (referred to as the S96 allele), and H95 G96 (referred to as the H95 allele), which differentially impact CWD progression. We hypothesize that the transmission of CWD prions between deer expressing different allotypes of PrP(C) modifies the contagious agent affecting disease spread. To evaluate the transmission properties of CWD prions derived experimentally from deer of four PRNP genotypes (wt/wt, S96/wt, H95/wt, or H95/S96), transgenic (tg) mice expressing the wt allele (tg33) or S96 allele (tg60) were challenged with these prion agents. Passage of deer CWD prions into tg33 mice resulted in 100% attack rates, with the CWD H95/S96 prions having significantly longer incubation periods. The disease signs and neuropathological and protease-resistant prion protein (PrP-res) profiles in infected tg33 mice were similar between groups, indicating that a prion strain (Wisc-1) common to all CWD inocula was amplified. In contrast, tg60 mice developed prion disease only when inoculated with the H95/wt and H95/S96 CWD allotypes. Serial passage in tg60 mice resulted in adaptation of a novel CWD strain (H95(+)) with distinct biological properties. Transmission of first-passage tg60CWD-H95(+) isolates into tg33 mice, however, elicited two prion disease presentations consistent with a mixture of strains associated with different PrP-res glycotypes. Our data indicate that H95-PRNP heterozygous deer accumulated two CWD strains whose emergence was dictated by the PrP(C) primary structure of the recipient host. These findings suggest that CWD transmission between cervids expressing distinct PrP(C) molecules results in the generation of novel CWD strains. IMPORTANCE: CWD prions are contagious among wild and captive cervids in North America and in South Korea. We present data linking the amino acid variant Q95H in white-tailed deer cellular prion protein (PrP(C)) to the emergence of a novel CWD strain (H95(+)). We show that, upon infection, deer expressing H95-PrP(C) molecules accumulated a mixture of CWD strains that selectively propagated depending on the PRNP genotype of the host in which they were passaged. Our study also demonstrates that mice expressing the deer S96-PRNP allele, previously shown to be resistant to various cervid prions, are susceptible to H95(+) CWD prions. The potential for the generation of novel strains raises the possibility of an expanded host range for CWD.


Assuntos
Genótipo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/metabolismo , Animais , Cervos , Camundongos , Camundongos Transgênicos
7.
PLoS One ; 9(5): e97768, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24828439

RESUMO

Accumulation of prion protein (PrPSc) in the central nervous system is the hallmark of transmissible spongiform encephalopathies. However, in some of these diseases such as scrapie or chronic wasting disease, the PrPSc can also accumulate in other tissues, particularly in the lymphoreticular system. In recent years, PrPSc in organs other than nervous and lymphoid have been described, suggesting that distribution of this protein in affected individuals may be much larger than previously thought. In the present study, 11 non-nervous/non-lymphoid organs from 16 naturally scrapie infected sheep in advanced stages of the disease were examined for the presence of PrPSc. Fourteen infected sheep were of the ARQ/ARQ PRNP genotype and 2 of the VRQ/VRQ, where the letters A, R, Q, and V represent the codes for amino-acids alanine, arginine, glutamine and valine, respectively. Adrenal gland, pancreas, heart, skin, urinary bladder and mammary gland were positive for PrPSc by immunohistochemistry and IDEXX HerdChek scrapie/BSE Antigen EIA Test in at least one animal. Lung, liver, kidney and skeletal muscle exhibited PrPSc deposits by immunohistochemistry only. To our knowledge, this is the first report regarding the presence of PrPSc in the heart, pancreas and urinary bladder in naturally acquired scrapie infections. In some other organs examined, in which PrPSc had been previously detected, PrPSc immunolabeling was observed to be associated with new structures within those organs. The results of the present study illustrate a wide dissemination of PrPSc in both ARQ/ARQ and VRQ/VRQ infected sheep, even when the involvement of the lymphoreticular system is scarce or absent, thus highlighting the role of the peripheral nervous system in the spread of PrPSc.


Assuntos
Miocárdio/química , Pâncreas/química , Sistema Nervoso Periférico/química , Proteínas PrPSc/isolamento & purificação , Scrapie/metabolismo , Bexiga Urinária/química , Animais , Sistema Nervoso Central/química , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Feminino , Genótipo , Imuno-Histoquímica , Miocárdio/metabolismo , Miocárdio/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Proteínas PrPSc/metabolismo , Proteínas PrPSc/patogenicidade , Scrapie/genética , Scrapie/patologia , Ovinos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
8.
PLoS One ; 6(12): e27525, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194786

RESUMO

Scrapie is a transmissible spongiform encephalopathy with a wide PrPres dissemination in many non-neural tissues and with high levels of transmissibility within susceptible populations. Mechanisms of transmission are incompletely understood. It is generally assumed that it is horizontally transmitted by direct contact between animals or indirectly through the environment, where scrapie can remain infectious for years. In contrast, in utero vertical transmission has never been demonstrated and has rarely been studied. Recently, the use of the protein misfolding cyclic amplification technique (PMCA) has allowed prion detection in various tissues and excretions in which PrPres levels have been undetectable by traditional assays. The main goal of this study was to detect PrPres in fetal tissues and the amniotic fluid from natural scrapie infected ewes using the PMCA technique. Six fetuses from three infected pregnant ewes in an advanced clinical stage of the disease were included in the study. From each fetus, amniotic fluid, brain, spleen, ileo-cecal valve and retropharyngeal lymph node samples were collected and analyzed using Western blotting and PMCA. Although all samples were negative using Western blotting, PrPres was detected after in vitro amplification. Our results represent the first time the biochemical detection of prions in fetal tissues, suggesting that the in utero transmission of scrapie in natural infected sheep might be possible.


Assuntos
Feto/metabolismo , Feto/patologia , Predisposição Genética para Doença , Proteínas PrPSc/metabolismo , Scrapie/embriologia , Scrapie/metabolismo , Ovinos/embriologia , Animais , Automação , Western Blotting , Feminino , Imuno-Histoquímica , Gravidez , Dobramento de Proteína , Scrapie/patologia , Ovinos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...