Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Nat Commun ; 15(1): 4216, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760394

RESUMO

Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene ß-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Assuntos
Alanina , Peptídeos Antimicrobianos , Macrófagos , Mycobacterium tuberculosis , NF-kappa B , Tuberculose , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/metabolismo , Animais , Camundongos , NF-kappa B/metabolismo , Humanos , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/imunologia , Alanina/metabolismo , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/genética , Tuberculose/microbiologia , Tuberculose/imunologia , Alanina Desidrogenase/metabolismo , Alanina Desidrogenase/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transdução de Sinais , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Feminino
2.
Nat Microbiol ; 9(7): 1856-1872, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806671

RESUMO

Adaptation to hypoxia is a major challenge for the survival of Mycobacterium tuberculosis (Mtb) in vivo. Interferon (IFN)-γ-producing CD8+ T cells contribute to control of Mtb infection, in part by promoting antimicrobial activities of macrophages. Whether Mtb counters these responses, particularly during hypoxic conditions, remains unknown. Using metabolomic, proteomic and genetic approaches, here we show that Mtb induced Rv0884c (SerC), an Mtb phosphoserine aminotransferase, to produce D-serine. This activity increased Mtb pathogenesis in mice but did not directly affect intramacrophage Mtb survival. Instead, D-serine inhibited IFN-γ production by CD8+ T cells, which indirectly reduced the ability of macrophages to restrict Mtb upon co-culture. Mechanistically, D-serine interacted with WDR24 and inhibited mTORC1 activation in CD8+ T cells. This decreased T-bet expression and reduced IFN-γ production by CD8+ T cells. Our findings suggest an Mtb evasion mechanism where pathogen metabolic adaptation to hypoxia leads to amino acid-dependent suppression of adaptive anti-TB immunity.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Macrófagos , Mycobacterium tuberculosis , Serina , Tuberculose , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Mycobacterium tuberculosis/imunologia , Camundongos , Serina/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Camundongos Endogâmicos C57BL , Transaminases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hipóxia/imunologia , Hipóxia/metabolismo , Feminino , Interações Hospedeiro-Patógeno/imunologia
3.
Cell Discov ; 10(1): 36, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548762

RESUMO

Internal N6-methyladenosine (m6A) modifications are among the most abundant modifications of messenger RNA, playing a critical role in diverse biological and pathological processes. However, the functional role and regulatory mechanism of m6A modifications in the immune response to Mycobacterium tuberculosis infection remains unknown. Here, we report that methyltransferase-like 14 (METTL14)-dependent m6A methylation of NAPDH oxidase 2 (Nox2) mRNA was crucial for the host immune defense against M. tuberculosis infection and that M. tuberculosis-secreted antigen EsxB (Rv3874) inhibited METTL14-dependent m6A methylation of Nox2 mRNA. Mechanistically, EsxB interacted with p38 MAP kinase and disrupted the association of TAB1 with p38, thus inhibiting the TAB1-mediated autophosphorylation of p38. Interaction of EsxB with p38 also impeded the binding of p38 with METTL14, thereby inhibiting the p38-mediated phosphorylation of METTL14 at Thr72. Inhibition of p38 by EsxB restrained liquid-liquid phase separation (LLPS) of METTL14 and its subsequent interaction with METTL3, preventing the m6A modification of Nox2 mRNA and its association with the m6A-binding protein IGF2BP1 to destabilize Nox2 mRNA, reduce ROS levels, and increase intracellular survival of M. tuberculosis. Moreover, deletion or mutation of the phosphorylation site on METTL14 impaired the inhibition of ROS level by EsxB and increased bacterial burden or histological damage in the lungs during infection in mice. These findings identify a previously unknown mechanism that M. tuberculosis employs to suppress host immunity, providing insights that may empower the development of effective immunomodulators that target M. tuberculosis.

4.
Cell Host Microbe ; 31(11): 1820-1836.e10, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37848028

RESUMO

Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-ß (IFN-ß) production. UreC-mediated activation of the IFN-ß pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.


Assuntos
Interferon Tipo I , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Urease/metabolismo , Interferon beta/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Nucleotidiltransferases/genética
5.
Mol Cell ; 83(21): 3885-3903.e5, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37832545

RESUMO

The translocation of stimulator of interferon genes (STING) from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC) enables its activation. However, the mechanism underlying the regulation of STING exit from the ER remains elusive. Here, we found that STING induces the activation of transforming growth factor beta-activated kinase 1 (TAK1) prior to STING trafficking in a TAK1 binding protein 1 (TAB1)-dependent manner. Intriguingly, activated TAK1 directly mediates STING phosphorylation on serine 355, which facilitates its interaction with STING ER exit protein (STEEP) and thereby promotes its oligomerization and translocation to the ERGIC for subsequent activation. Importantly, activation of TAK1 by monophosphoryl lipid A, a TLR4 agonist, boosts cGAMP-induced antitumor immunity dependent on STING phosphorylation in a mouse allograft tumor model. Taken together, TAK1 was identified as a checkpoint for STING activation by promoting its trafficking, providing a basis for combinatory tumor immunotherapy and intervention in STING-related diseases.


Assuntos
Neoplasias , Animais , Camundongos , Fosforilação
6.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37066876

RESUMO

Ferritin, a key regulator of iron homeostasis in macrophages, has been reported to confer host defenses against Mycobacterium tuberculosis (Mtb) infection. Nuclear receptor coactivator 4 (NCOA4) was recently identified as a cargo receptor in ferritin degradation. Here, we show that Mtb infection enhanced NCOA4-mediated ferritin degradation in macrophages, which in turn increased the bioavailability of iron to intracellular Mtb and therefore promoted bacterial growth. Of clinical relevance, the upregulation of FTH1 in macrophages was associated with tuberculosis (TB) disease progression in humans. Mechanistically, Mtb infection enhanced NCOA4-mediated ferritin degradation through p38/AKT1- and TRIM21-mediated proteasomal degradation of HERC2, an E3 ligase of NCOA4. Finally, we confirmed that NCOA4 deficiency in myeloid cells expedites the clearance of Mtb infection in a murine model. Together, our findings revealed a strategy by which Mtb hijacks host ferritin metabolism for its own intracellular survival. Therefore, this represents a potential target for host-directed therapy against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Ferro/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Fatores de Transcrição/metabolismo , Tuberculose/genética , Autofagia
7.
Cell Rep ; 42(5): 112442, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37099423

RESUMO

Cyclic GMP-AMP synthase (cGAS) recognizes Y-form cDNA of human immunodeficiency virus type 1 (HIV-1) and initiates antiviral immune response through cGAS-stimulator of interferon genes (STING)-TBK1-IRF3-type I interferon (IFN-I) signalingcascade. Here, we report that the HIV-1 p6 protein suppresses HIV-1-stimulated expression of IFN-I and promotes immune evasion. Mechanistically, the glutamylated p6 at residue Glu6 inhibits the interaction between STING and tripartite motif protein 32 (TRIM32) or autocrine motility factor receptor (AMFR). This subsequently suppresses the K27- and K63-linked polyubiquitination of STING at K337, therefore inhibiting STING activation, whereas mutation of the Glu6 residue partially reverses the inhibitory effect. However, CoCl2, an agonist of cytosolic carboxypeptidases (CCPs), counteracts the glutamylation of p6 at the Glu6 residue and inhibits HIV-1 immune evasion. These findings reveal a mechanism through which an HIV-1 protein mediates immune evasion and provides a therapeutic drug candidate to treat HIV-1 infection.


Assuntos
HIV-1 , Humanos , HIV-1/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Imunidade Inata/genética
8.
Cell Rep ; 42(3): 112275, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943864

RESUMO

Enhancing chemosensitivity is one of the largest unmet medical needs in cancer therapy. Cyclic GMP-AMP synthase (cGAS) connects genome instability caused by platinum-based chemotherapeutics to type I interferon (IFN) response. Here, by using a high-throughput small-molecule microarray-based screening of cGAS interacting compounds, we identify brivanib, known as a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor, as a cGAS modulator. Brivanib markedly enhances cGAS-mediated type I IFN response in tumor cells treated with platinum. Mechanistically, brivanib directly targets cGAS and enhances its DNA binding affinity. Importantly, brivanib synergizes with cisplatin in tumor control by boosting CD8+ T cell response in a tumor-intrinsic cGAS-dependent manner, which is further validated by a patient-derived tumor-like cell clusters model. Taken together, our findings identify cGAS as an unprecedented target of brivanib and provide a rationale for the combination of brivanib with platinum-based chemotherapeutics in cancer treatment.


Assuntos
Alanina , Antineoplásicos , Neoplasias , Nucleotidiltransferases , Triazinas , Humanos , Ensaios de Triagem em Larga Escala , Alanina/análogos & derivados , Nucleotidiltransferases/metabolismo , Interferons/imunologia , Cisplatino/administração & dosagem , Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Tumorais Cultivadas/efeitos dos fármacos , Neoplasias/tratamento farmacológico
9.
Microbiol Spectr ; 10(5): e0155022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190409

RESUMO

Pseudomonas aeruginosa (PA) is known as one kind of extracellular pathogens. However, more evidence showed that PA encounters the intracellular environment in different mammalian cell types. Little is known of innate immune factors modulating intracellular PA survival. In the present study, we proposed that interferon-ß (IFN-ß) is beneficial to the survival of PA in the cytoplasm of macrophages. Furthermore, we found that interleukin-1ß (IL-1ß) induced by PA suppresses IFN-ß response driven by the cGAS-STING-TBK1 pathway. Mechanistically, IL-1ß decreased the production of cyclic GMP-AMP (cGAMP) by activating AKT kinase. cGAMP is necessarily sufficient to stimulate the transcription of IFN-ß via the STING adaptor-TBK1 kinase-IRF3 transcription factor axis. Thus, our findings uncovered a novel module for PA intracellular survival involving IFN-ß production restricted by IL-1ß and provided a strong rationale for a potential clinical strategy against pulmonary PA infection patients. IMPORTANCE The link between innate immunity and intracellular Pseudomonas aeruginosa is unclear. Our studies illuminated the role of interferon-ß (IFN-ß) in remote intracellular PA infection. Furthermore, our experimental evidence also indicated that IL-1ß is a negative regulator of IFN-ß production and, in particular, P. aeruginosa infection. The inhibition of IFN-ß may be used as a potential therapeutic method against pulmonary PA infection.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Pseudomonas aeruginosa , Animais , Humanos , Pseudomonas aeruginosa/metabolismo , Interleucina-1beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Imunidade Inata , Mamíferos/metabolismo
10.
Emerg Microbes Infect ; 11(1): 2132-2146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35930458

RESUMO

Airway microenvironment played an important role in the progression of chronic respiratory disease. Here we showed that standardized pondus hydrogenii (pH) of exhaled breath condensate (EBC) of bronchiectasis patients was significantly lower than that of controls and was significantly correlated with bronchiectasis severity index (BSI) scores and disease prognosis. EBC pH was lower in severe patients than that in mild and moderate patients. Besides, acidic microenvironment deteriorated Pseudomonas aeruginosa (P. aeruginosa) pulmonary infection in mice models. Mechanistically, acidic microenvironment increased P. aeruginosa outer membrane vesicles (PA_OMVs) released and boosted it induced the activation of interferon regulatory factor3 (IRF3)-interferonß (IFN-ß) signalling pathway, ultimately compromised the anti-bacteria immunity. Targeted knockout of IRF3 or type 1 interferon receptor (IFNAR1) alleviated lung damage and lethality of mice after P. aeruginosa infection that aggravated by acidic microenvironment. Together, these findings identified airway acidification impaired host resistance to P. aeruginosa infection by enhancing it induced the activation of IRF3-IFN-ß signalling pathway. Standardized EBC pH may be a useful biomarker of disease severity and a potential therapeutic target for the refractory P. aeruginosa infection. The study also provided one more reference parameter for drug selection and new drug discovery for bronchiectasis.


Assuntos
Bronquiectasia , Interferon Tipo I , Infecções por Pseudomonas , Animais , Concentração de Íons de Hidrogênio , Interferon beta/genética , Camundongos , Pseudomonas aeruginosa/genética
11.
J Mol Cell Biol ; 14(5)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35536585

RESUMO

Pattern recognition receptors are critical for the sensing of pathogen-associated molecular patterns or danger-associated molecular patterns and subsequent mounting of innate immunity and shaping of adaptive immunity. The identification of 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) as a major cytosolic DNA receptor is a milestone in the field of DNA sensing. The engagement of cGAS by double-stranded DNA from different origins, including invading pathogens, damaged mitochondria, ruptured micronuclei, and genomic DNA results in the generation of cGAMP and activation of stimulator of interferon genes, which thereby activates innate immunity mainly characterized by the activation of type I interferon response. In recent years, great progress has been made in understanding the subcellular localization and novel functions of cGAS. In this review, we particularly focus on summarizing the multifaceted roles of cGAS in regulating senescence, autophagy, cell stemness, apoptosis, angiogenesis, cell proliferation, antitumor effect, DNA replication, DNA damage repair, micronucleophagy, as well as cell metabolism.


Assuntos
Interferon Tipo I , Moléculas com Motivos Associados a Patógenos , DNA/metabolismo , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
12.
Mol Cell ; 82(11): 2032-2049.e7, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35460603

RESUMO

Virus infection modulates both host immunity and host genomic stability. Poly(ADP-ribose) polymerase 1 (PARP1) is a key nuclear sensor of DNA damage, which maintains genomic integrity, and the successful application of PARP1 inhibitors for clinical anti-cancer therapy has lasted for decades. However, precisely how PARP1 gains access to cytoplasm and regulates antiviral immunity remains unknown. Here, we report that DNA virus induces a reactive nitrogen species (RNS)-dependent DNA damage and activates DNA-dependent protein kinase (DNA-PK). Activated DNA-PK phosphorylates PARP1 on Thr594, thus facilitating the cytoplasmic translocation of PARP1 to inhibit the antiviral immunity both in vitro and in vivo. Mechanistically, cytoplasmic PARP1 interacts with and directly PARylates cyclic GMP-AMP synthase (cGAS) on Asp191 to inhibit its DNA-binding ability. Together, our findings uncover an essential role of PARP1 in linking virus-induced genome instability with inhibition of host immunity, which is of relevance to cancer, autoinflammation, and other diseases.


Assuntos
Antivirais , Nucleotidiltransferases , Antivirais/farmacologia , Citoplasma/genética , Citoplasma/metabolismo , DNA , Dano ao DNA , Instabilidade Genômica , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo
13.
Nat Metab ; 4(3): 359-373, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288721

RESUMO

Both host genetics and the gut microbiome have important effects on human health, yet how host genetics regulates gut bacteria and further determines disease susceptibility remains unclear. Here, we find that the gut microbiome pattern of participants with active tuberculosis is characterized by a reduction of core species found across healthy individuals, particularly Akkermansia muciniphila. Oral treatment of A. muciniphila or A. muciniphila-mediated palmitoleic acid strongly inhibits tuberculosis infection through epigenetic inhibition of tumour necrosis factor in mice infected with Mycobacterium tuberculosis. We use three independent cohorts comprising 6,512 individuals and identify that the single-nucleotide polymorphism rs2257167 'G' allele of type I interferon receptor 1 (encoded by IFNAR1 in humans) contributes to stronger type I interferon signalling, impaired colonization and abundance of A. muciniphila, reduced palmitoleic acid production, higher levels of tumour necrosis factor, and more severe tuberculosis disease in humans and transgenic mice. Thus, host genetics are critical in modulating the structure and functions of gut microbiome and gut microbial metabolites, which further determine disease susceptibility.


Assuntos
Microbioma Gastrointestinal , Tuberculose , Animais , Suscetibilidade a Doenças , Ácidos Graxos Monoinsaturados , Humanos , Imunidade , Camundongos , Receptor de Interferon alfa e beta , Tuberculose/genética , Fatores de Necrose Tumoral/farmacologia , Verrucomicrobia
14.
Cell Discov ; 7(1): 90, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608123

RESUMO

Pathogenic mycobacteria induce the formation of hypoxic granulomas during latent tuberculosis (TB) infection, in which the immune system contains, but fails to eliminate the mycobacteria. Fatty acid metabolism-related genes are relatively overrepresented in the mycobacterial genome and mycobacteria favor host-derived fatty acids as nutrient sources. However, whether and how mycobacteria modulate host fatty acid metabolism to drive granuloma progression remains unknown. Here, we report that mycobacteria under hypoxia markedly secrete the protein Rv0859/MMAR_4677 (Fatty-acid degradation A, FadA), which is also enriched in tuberculous granulomas. FadA acts as an acetyltransferase that converts host acetyl-CoA to acetoacetyl-CoA. The reduced acetyl-CoA level suppresses H3K9Ac-mediated expression of the host proinflammatory cytokine Il6, thus promoting granuloma progression. Moreover, supplementation of acetate increases the level of acetyl-CoA and inhibits the formation of granulomas. Our findings suggest an unexpected mechanism of a hypoxia-induced mycobacterial protein suppressing host immunity via modulation of host fatty acid metabolism and raise the possibility of a novel therapeutic strategy for TB infection.

15.
EMBO Rep ; 22(7): e51678, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33987949

RESUMO

Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor ß-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.


Assuntos
Mycobacterium tuberculosis , Peixe-Zebra , Animais , Galactanos , Galectinas/genética , Camundongos
16.
ACS Biomater Sci Eng ; 7(5): 1817-1826, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33966375

RESUMO

Pseudomonas aeruginosa (PA) has emerged as a pressing challenge to pulmonary infection and lung damage. The LL37 peptide is an efficient antimicrobial agent against PA strains, but its application is limited because of fast clearance in vivo, biosafety concerns, and low bioavailability. Thus, an albumin-based nanodrug delivery system with reduction sensitivity was developed by forming intermolecular disulfide bonds to increase in vivo LL37 performance against PA. Cationic LL37 can be efficiently encapsulated via electrostatic interactions to exert improved antimicrobial effects. The LL37 peptide exhibits greater than 48 h of sustained released from LL37 peptide nanoparticles (LL37 PNP), and prolonged antimicrobial effects were noted as the incubation time increased. Levels of inflammatory cytokines secreted by peritoneal macrophages, including TNF-α and IL-6, were reduced significantly after LL37 PNP treatment following PA stimulation, indicating that LL37 PNP inhibits PA growth and exerts anti-inflammatory effects in vitro. In a murine model of acute PA lung infection, LL37 PNP significantly reduced TNF-α and IL-1ß expression and alleviated lung damage. The accelerated clearance of PA indicates that LL37 PNP could improve PA lung infection and the subsequent inflammation response more efficiently compared with free LL37 peptide. In conclusion, this excellent biocompatible LL37 delivery strategy may serve as an alternative approach for the application of new types of clinical treatment in future.


Assuntos
Nanopartículas , Pseudomonas aeruginosa , Albuminas , Animais , Peptídeos Catiônicos Antimicrobianos , Preparações de Ação Retardada , Pulmão , Camundongos
17.
Autophagy ; 17(12): 3976-3991, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33752561

RESUMO

Micronuclei are constantly considered as a marker of genome instability and very recently found to be a trigger of innate immune responses. An increased frequency of micronuclei is associated with many diseases, but the mechanism underlying the regulation of micronuclei homeostasis remains largely unknown. Here, we report that CGAS (cyclic GMP-AMP synthase), a known regulator of DNA sensing and DNA repair, reduces the abundance of micronuclei under genotoxic stress in an autophagy-dependent manner. CGAS accumulates in the autophagic machinery and directly interacts with MAP1LC3B/LC3B in a manner dependent upon its MAP1LC3-interacting region (LIR). Importantly, the interaction is essential for MAP1LC3 recruitment to micronuclei and subsequent clearance of micronuclei via autophagy (micronucleophagy) in response to genotoxic stress. Moreover, in contrast to its DNA sensing function to activate micronuclei-driven inflammation, CGAS-mediated micronucleophagy blunts the production of cyclic GMP-AMP (cGAMP) induced by genotoxic stress. We therefore conclude that CGAS is a receptor for the selective autophagic clearance of micronuclei and uncovered an unprecedented role of CGAS in micronuclei homeostasis to dampen innate immune surveillance.Abbreviations: ATG: autophagy-related; CGAS: cyclic GMP-AMP synthase; CQ: chloroquine; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; LIR, MAP1LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NDZ: nocodazole; STING1: stimulator of interferon response cGAMP interactor 1.


Assuntos
Autofagia , Nucleotidiltransferases , Autofagia/fisiologia , DNA/metabolismo , Humanos , Imunidade Inata/genética , Inflamação , Nucleotidiltransferases/metabolismo
18.
Int Immunopharmacol ; 91: 107283, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373810

RESUMO

Apoptotic pathways play an important role in Mycobacterium tuberculosis-infected macrophages. Sirt1 is a member of the deacetylase family that is known to promote apoptosis resistance in many mammalian cells. However, the apoptotic role of Sirt1 in the process of M. tuberculosis infection remains unclear. With the help of mouse macrophage samples, 129/Sv background mice, and PBMCs-derived macrophages from healthy controls and patients with tuberculosis, we have shown that M. tuberculosis infection reduced Sirt1 mRNA and protein expression, however, increased Bax mRNA and protein expression. Further, we found that resveratrol, a Sirt1 activator, inhibited M. tuberculosis-induced Bax expression. Thus, it seems that Sirt1 acts as a novel regulator of apoptosis signaling in M. tuberculosis infection via its effects on Bax. Sirt1 activation may therefore be a new candidate for the prevention and treatment of tuberculosis.


Assuntos
Apoptose , Macrófagos/enzimologia , Mycobacterium tuberculosis/patogenicidade , Sirtuína 1/metabolismo , Tuberculose/enzimologia , Proteína X Associada a bcl-2/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , Ativação Enzimática , Feminino , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Transdução de Sinais , Sirtuína 1/genética , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologia , Proteína X Associada a bcl-2/genética
19.
Arch Biochem Biophys ; 694: 108612, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007281

RESUMO

Apoptotic and inflammatory pathways play important roles in Mycobacterium tuberculosis-infected macrophages. Sirt1 is a member of the deacetylase family that is known to promote apoptosis resistance in mammalian cells and was recently reported to regulate mycobacterial immunopathogenesis via inflammatory responses. However, the apoptotic role of Sirt1 in the process of M. tuberculosis infection remains unclear. With the help of mouse peritoneal macrophage samples, we have shown that resveratrol, a Sirt1 activator, inhibited M. tuberculosis-induced apoptosis in peritoneal macrophages. Further, we found that Sirt1 activation prompted M. tuberculosis induced GSK3ß phosphorylation. Further investigation into the possible mechanisms of action showed that Sirt1 directly interacted with GSK3ß and enhanced GSK3ß phosphorylation by promoting its deacetylation. Sirt1 activation inhibited M. tuberculosis growth. Thus, it seemed that Sirt1 acted as a novel regulator of apoptosis signaling in M. tuberculosis infection via its direct effects on GSK3ß. Sirt1 may therefore be a new candidate for the prevention and treatment of tuberculosis.


Assuntos
Apoptose/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Sirtuína 1/metabolismo , Animais , Ativadores de Enzimas/farmacologia , Feminino , Glicogênio Sintase Quinase 3 beta/química , Células HEK293 , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos
20.
J Cell Mol Med ; 24(21): 12716-12725, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32977368

RESUMO

The role of corticosteroids in acute lung injury (ALI) remains uncertain. This study aims to determine the underlying mechanisms of corticosteroid treatment for lipopolysaccharide (LPS)-induced inflammation and ALI. We used corticosteroid treatment for LPS-induced murine ALI model to investigate the effect of corticosteroid on ALI in vivo. Moreover, LPS-stimulated macrophages were used to explore the specific anti-inflammatory effects of corticosteroids on NLRP3-inflammasome in vitro. We found corticosteroids attenuated LPS-induced ALI, which manifested in reduction of the alveolar structure destruction, the infiltration of neutrophils and the inflammatory cytokines release of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) in Lung. In vitro, when NLRP3-inflammasome was knocked out, inflammatory response of caspase-1 activation and IL-1ß secretion was obviously declined. Further exploration, our results showed that when corticosteroid preprocessed macrophages before LPS primed, it obviously inhibited the activation of caspase-1 and the maturation of IL-1ß, which depended on inhibiting the nuclear factor-κB (NF-κB) signal pathway activation. However, when corticosteroids intervened the LPS-primed macrophages, it also negatively regulated NLRP3-inflammasome activation through suppressing mitochondrial reactive oxygen species (mtROS) production. Our results revealed that corticosteroids played a protection role in LPS-induced inflammation and ALI by suppressing both NF-κB signal pathway and mtROS-dependent NLRP3 inflammasome activation.


Assuntos
Corticosteroides/uso terapêutico , Inflamassomos/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Lesão Pulmonar Aguda , Corticosteroides/farmacologia , Animais , Caspase 1/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Ativação Enzimática/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Interleucina-18/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...