Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121747, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991345

RESUMO

Megacities face significant pollution challenges, particularly the elevated levels of heavy metals (HMs) in particulate matter (PM). Despite the advent of interdisciplinary and advanced methods for HM source analysis, integrating and applying these approaches to identify HM sources in PM remains a hurdle. This study employs a year-long daily sampling dataset for PM1 and PM1-10 to examine the patterns of HM concentrations under hazy, clean, and rainy conditions in Hangzhou City, aiming to pinpoint the primary sources of HMs in PM. Contrary to other HMs that remained within acceptable limits, the annual average concentrations of Cd and Ni were found to be 20.6 ± 13.6 and 46.9 ± 34.8 ng/m³, respectively, surpassing the World Health Organization's limits by 4.1 and 1.9 times. Remarkably, Cd levels decreased on hazy days, whereas Ni levels were observed to rise on rainy days. Using principal component analysis (PCA), enrichment factor (EF), and backward trajectory analysis, Fe, Mn, Cu, and Zn were determined to be primarily derived from traffic emissions, and there was an interaction between remote migration and local emissions in haze weather. Isotope analysis reveals that Pb concentrations in the Hangzhou region were primarily influenced by emissions from unleaded gasoline, coal combustion, and municipal solid waste incineration, with additional impact from long-range transport; it also highlights nuanced differences between PM1 and PM1-10. Pb isotope and PCA analyses indicate that Ni primarily stemmed from waste incineration emissions. This explanation accounts for the observed higher Ni concentrations on rainy days. Backward trajectory cluster analysis revealed that southern airflows were the primary source of high Cd concentrations on clean days in Hangzhou City. This study employs a multifaceted approach and cross-validation to successfully delineate the sources of HMs in Hangzhou's PM. It offers a methodology for the precise and reliable analysis of complex HM sources in megacity PM.

2.
Sci Bull (Beijing) ; 69(7): 978-987, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242834

RESUMO

Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.

3.
J Environ Sci (China) ; 132: 31-42, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336608

RESUMO

Black carbon (BC) aerosols in the atmosphere play a significant role in climate systems due to their strong ability to absorb solar radiation. The lifetime of BC depends on atmospheric transport, aging and consequently on wet scavenging processes (in-cloud and below-cloud scavenging). In this study, sequential rainwater samples in eight rainfall events collected in 2 mm interval were measured by a tandem system including a single particle soot photometer (SP2) and a nebulizer. The results showed that the volume-weighted average (VWA) mass concentrations of refractory black carbon (rBC) in each rainfall event varied, ranging from 10.8 to 78.9 µg/L. The highest rBC concentrations in the rainwater samples typically occurred in the first fraction from individual rainfall events. The geometric mean median mass-equivalent diameter (MMD) decreased under precipitation, indicating that rBC with larger sizes was relatively aged and preferentially removed by wet scavenging. A positive correlation (R2 = 0.73) between the VWA mass concentrations of rBC in rainwater and that in ambient air suggested the important contribution of scavenging process. Additionally, the contributions of in-cloud and below-cloud scavenging were distinguished and accounted for 74% and 26% to wet scavenging, respectively. The scavenging ratio of rBC particles was estimated to be 0.06 on average. This study provides helpful information for better understanding the mechanism of rBC wet scavenging and reducing the uncertainty of numerical simulations of the climate effects of rBC.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Pequim , Fuligem/análise , Aerossóis/análise , Carbono , Monitoramento Ambiental/métodos
4.
Adv Atmos Sci ; 39(10): 1608-1622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400782

RESUMO

The attainment of suitable ambient air quality standards is a matter of great concern for successfully hosting the XXIV Olympic Winter Games (OWG). Transport patterns and potential sources of pollutants in Zhangjiakou (ZJK) were investigated using pollutant monitoring datasets and a dispersion model. The PM2.5 concentration during February in ZJK has increased slightly (28%) from 2018 to 2021, mostly owing to the shift of main potential source regions of west-central Inner Mongolia and Mongolian areas (2015-18) to the North China Plain and northern Shanxi Province (NCPS) after 2018. Using CO as an indicator, the relative contributions of the different regions to the receptor site (ZJK) were evaluated based on the source-receptor-relationship method (SRR) and an emission inventory. We found that the relative contribution of pollutants from NCPS increased from 33% to 68% during 2019-21. Central Inner Mongolia (CIM) also has an important impact on ZJK under unfavorable weather conditions. This study demonstrated that the effect of pollution control measures in the NCPS and CIM should be strengthened to ensure that the air quality meets the standard during the XXIV OWG.

5.
Environ Pollut ; 292(Pt B): 118407, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715272

RESUMO

Benefiting from the pollution controls implemented by the Chinese government, the concentrations of PM2.5, SO2, NO2 and CO showed a significant decrease in Beijing during 2013-2017. In this study, an observation-based method was employed to estimate the relative contributions of regional transport (MaxRTC) and local emissions (MinLEC) to air pollutant levels during 2013-2017 in Beijing. The results showed that the MaxRTC to SO2 and PM2.5 increased significantly over the five years, while those to CO and NO2 changed little. Furthermore, the difference in the emissions control efficiency (ΔECE) between Beijing (receptor region) and Shijiazhuang (source region), which refers to the concentration changes corresponding to unit emission changes of a certain air pollutant between the two regions, was introduced to verify the estimated variation in MaxRTC and MinLEC over 2013-2017. The negative value of ΔECE found for PM2.5 and SO2 supports the conclusion of an increasing effect of regional transport. This implies that local emissions control alone is not adequate for mitigating Beijing's air pollution, especially with the demand for continuously improving air quality. Joint prevention and control with regard to air quality on a regional scale is more important and urgent in the next Five-Year Plan.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , China , Monitoramento Ambiental , Material Particulado/análise
6.
J Environ Sci (China) ; 103: 20-32, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743902

RESUMO

The region along the Taihang Mountains in the North China Plain (NCP) is characterized by serious fine particle pollution. To clarify the formation mechanism and controlling factors, an observational study was conducted to investigate the physical and chemical properties of the fine particulate matter in Jiaozuo city, China. Mass concentrations of the water-soluble ions (WSIs) in PM2.5 and gaseous pollutant precursors were measured on an hourly basis from December 1, 2017, to February 27, 2018. The positive matrix factorization (PMF) method and the FLEXible PARTicle (FLEXPART) model were employed to identify the sources of PM2.5. The results showed that the average mass concentration of PM2.5 was 111 µg/m3 during the observation period. Among the major WSIs, sulfate, nitrate, and ammonium (SNA) constituted 62% of the total PM2.5 mass, and NO3- ranked the highest with an average contribution of 24.6%. NH4+ was abundant in most cases in Jiaozuo. According to chemical balance analysis, SO42-, NO3-, and Cl- might be present in the form of (NH4)2SO4, NH4NO3, NH4Cl, and KCl. The liquid-phase oxidation of SO2 and NO2 was severe during the haze period. The relative humidity and pH were the key factors influencing SO42- formation. We found that NO3- mainly stemmed from homogeneous gas-phase reactions in the daytime and originated from the hydrolysis of N2O5 in the nighttime, which was inconsistent with previous studies. The PMF model identified five sources of PM2.5: secondary origin (37.8%), vehicular emissions (34.7%), biomass burning (11.5%), coal combustion (9.4%), and crustal dust (6.6%).


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
7.
Environ Pollut ; 265(Pt B): 115086, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806464

RESUMO

In recent years, the Chinese government has made great efforts to jointly control and prevent air pollution, especially fine particulate matter (PM2.5). However, these efforts are challenged by technical constraints due to the significant temporal and spatial heterogeneity of PM2.5 across China. In this study, the Affinity Zone Identification Approach (AZIA), which combines rotated principal component analysis (RPCA) with revised clustering analysis, was developed and employed to regionalize PM2.5 pollution in China based on data from 1496 air quality monitoring sites recorded from 2013 to 2017. Two clustering methods, cluster analysis with statistical test (CAST) and K-center-point (K-medoids) clustering, were compared and revised to eliminate unspecified sites. Site zonation was finally extended to the municipality scale for the convenience of the controlling measures. The results revealed that 17 affinity zones with 5 different labels from clean to heavily polluted areas could be identified in China. The heavily polluted areas were mainly located in central and eastern China as well as Xinjiang Province, with regional average annual PM2.5 concentrations higher than 66 µg/m3. The new approach provided more comprehensive and detailed affinity zones than obtained in a previous study (Wang et al., 2015b). The North China Plain and Northeastern China were both further divided into northern and southern parts based on different pollution levels. In addition, five affinity zones were first recognized in western China. The findings provide not only a theoretical basis to further display the temporal and spatial variations in PM2.5 but also an effective solution for the cooperative control of air pollution in China.


Assuntos
Poluição do Ar , Poluição Ambiental , China , Humanos , Material Particulado , Fenômenos Físicos
8.
Sci Total Environ ; 681: 226-234, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103660

RESUMO

To understand the temporal characteristics and vertical distributions of ammonia (NH3) and ammonium (NH4) in urban Beijing, we conducted ground-based and tower-based measurements of gaseous NH3 and submicron aerosol composition. The average mixing ratio of NH3 was 16.5 ±â€¯7.4 ppb, ranging from 3.8 to 36.9 ppb. Gas-to-particle partitioning of NHx (=NH3 + NH4) played a significant role on NH3 concentration as the molar ratio of NH3 to NHx decreased as a function of NH4 concentration. The NH3 concentrations increased as a function of PM1 at lower levels (<125 µg m-3), but remained relatively constant at higher PM and NH4 levels, indicating an enhanced gas-to-particle conversion of NH3 during highly polluted conditions. The potential sources of NHx were found to include fossil fuel combustion and biomass burning. Regional transport could also play an important role on NH3 concentration during the formation stage of haze episodes due to particle-to-gas conversion. Four distinctive types of vertical profiles (87% of the time) of both NH3 and fine particle light extinction coefficient (bext) were observed and they were associated with well-mixed atmosphere, fast accumulation of local emissions, regional transport aloft, and the formation of low urban boundary layer, respectively. However, the vertical profiles of NH3 typically (96% of the time) showed a more homogeneous characteristic than those of bext below 260 m, except periods with both strong temperature inversion and large aerosol gradient, the formation of urban boundary layer shall cause a significant transition in the vertical distribution of NH3 below 260 m. During highly polluted situations (PM1 > 125 µg m-3), the strong effect of gas-to-particle partitioning of NHx sometimes (7% of the time) caused opposite trends in vertical profiles of NH3 and bext.

9.
Sci Total Environ ; 643: 692-703, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957434

RESUMO

In this study, Nested Air Quality Prediction Modeling System with Advance Particle Microphysics module (NAQPMS+APM) is applied to simulate the response characteristics of aerosol particle number concentration and mass concentration to emission changes over mainland China. It is the first attempt to investigate the response of both aerosol mass concentration and number concentration to emission changes using a chemical transport model with detailed aerosol microphysics over mainland China. Results indicate that the response characteristics are obviously different between aerosol particle number concentration and mass concentration. Generally, the response of number concentration shows a more heterogeneous spatial distribution than that of mass concentration. Furthermore, number concentration has a higher sensitivity not only to primary particles emission but also to precursor gases than that of mass concentration. Aerosol particle mass concentration exhibits a consistent trend with the emission change and yet aerosol number concentration does not. Due to the nonlinearity of aerosol microphysical processes, reduction of primary particles emission does not necessarily lead to an obvious decrease of aerosol number concentration and it even increases the aerosol number concentration. Over Central-Eastern China (CEC), the most polluted regions in China, reducing primary particles emission rather than precursor gas emissions is more effective in reducing particles number concentration. By contrast, the opposite is true over the northwestern China. The features of fine particles pollution revealed in this study are associated with the spatial differences in China's population, geography, climate and economy. Considering the more adverse effects of ultrafine particles on human health and the spatial distribution of population, making different measures in controlling particles number concentration from that controlling mass concentration in different regions over mainland China is indicated. MAIN FINDINGS: FPN concentration responds more heterogeneously to emission than FPM. Spatial difference of response of FPN to emission is distinguished by a boundary line.

10.
Environ Pollut ; 234: 29-38, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29156439

RESUMO

High concentrations of the fine particles (PM2.5) are frequently observed during all seasons over the North China Plain (NCP) region in recent years. In NCP, the contributions of regional transports to certain area, e.g. Beijing city, are often discussed and estimated by models when considering an effective air pollution controlling strategy. In this study, we selected three sites from southwest to northeast in NCP, in which the concentrations of air pollutants displayed a multi-step decreasing trend in space. An approach based on the measurement results at these sites has been developed to calculate the relative contributions of the minimal local emission (MinLEC) and the maximum regional transport (MaxRTC) to the air pollutants (e.g., SO2, NO2, CO, PM2.5) in Beijing. The minimal influence of local emission is estimated by the difference of the air pollutants' concentrations between urban and rural areas under the assumption of a similar influence of regional transport. Therefore, it's convenient to estimate the contributions of local emission from regional transport based on the selective measurement results instead of the complex numerical model simulation. For the whole year of 2013, the averaged contributions of MinLEC (MaxRTC) for NO2, SO2, PM2.5 and CO are 61.7% (30.7%), 46.6% (48%), 52.1% (40.2%) and 35.8% (45.5%), respectively. The diurnal variation of MaxRTC for SO2, PM2.5 and CO shows an increased pattern during the afternoon and reached a peak (more than 50%) around 18:00, which indicates that the regional transport is the important role for the daytime air pollution in Beijing.


Assuntos
Poluição do Ar/análise , Movimentos do Ar , Poluentes Atmosféricos/análise , Pequim , Monóxido de Carbono/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Dióxido de Enxofre/análise
11.
Environ Pollut ; 231(Pt 2): 1302-1313, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28916281

RESUMO

In this study, a three-dimensional air quality model with detailed aerosol microphysics (NAQPMS + APM) was applied to simulate the fine particle number size distribution and to explain the spatiotemporal variation of fine particle number concentrations in different size ranges over Beijing and surrounding areas in the haze season (Jan 15 to Feb 13 in 2006). Comparison between observations and the simulation indicates that the model is able to reproduce the main features of the particle number size distribution. The high number concentration of total particles, up to 26600 cm-3 in observations and 39800 cm-3 in the simulation, indicates the severity of pollution in Beijing. We find that primary particles with secondary species coating and secondary particles together control the particle number size distribution. Secondary particles dominate particle number concentration in the nucleation mode. Primary and secondary particles together determine the temporal evolution and spatial pattern of particle number concentration in the Aitken mode. Primary particles dominate particle number concentration in the accumulation mode. Over Beijing and surrounding areas, secondary particles contribute at least 80% of particle number concentration in the nucleation mode but only 10-20% in the accumulation mode. Nucleation mode particles and accumulation mode particles are anti-phased with each other. Nucleation or primary emissions alone could not explain the formation of the particle number size distribution in Beijing. Nucleation has larger effects on ultrafine particles while primary particles emissions are efficient in producing large particles in the accumulation mode. Reduction in primary particle emissions does not always lead to a decrease in the number concentration of ultrafine particles. Measures to reduce fine particle pollution in terms of particle number concentration may be different from those addressing particle mass concentration.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Modelos Químicos , Material Particulado/análise , Aerossóis , Poluição do Ar/análise , Pequim , Tamanho da Partícula , Estações do Ano
12.
Environ Pollut ; 230: 963-973, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28753899

RESUMO

Wet deposition is one of the most important and efficient removal mechanisms in the reduction of air pollution. As a key parameter determining wet deposition, the wet scavenging coefficient (WSC) is widely used in chemical transport models (CTMs) and reported values have large uncertainties. In this study, a high-resolution observational dataset of the soluble inorganic aerosols (SO42-, NO3- and NH4+, hereafter SNA) in the air and in rainwater during multiple precipitation events was collected using sequential sampling and used to estimate the below-cloud WSC in Beijing during the summer of 2014. The average concentrations of SNA in precipitation during the observational period were 7.9 mg/L, 6.2 mg/L and 4.6 mg/L, with the contributions from below-cloud scavenging constituting 56%, 61% and 47% of this, respectively. The scavenging ratios of SNA (i.e., the ratio of the concentrations in rain to concentrations in the air) were used with the height of the cloud base and the precipitation intensity to estimate the WSC. The estimated WSC of SO42- is comparable to that reported elsewhere. The relationship between the below-cloud WSC and the precipitation intensity followed an exponential power distribution (K=aPb) for SNA. In contrast to previous studies, this study considers the differences between the chemical compositions of the SNA, with the highest WSC for NO3-, followed by those of SO42- and NH4+. Therefore, we recommend that CTMs include ion specific WSCs in the future.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Sequestradores de Radicais Livres/análise , Compostos Inorgânicos/análise , Chuva/química , Aerossóis/análise , Pequim , Íons/análise , Estações do Ano
13.
Huan Jing Ke Xue ; 38(9): 3585-3593, 2017 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965236

RESUMO

Studying the evolution of secondary inorganic aerosols, which are important components of PM2.5, is crucial to improving our understanding about the air pollution in big cities. This study investigates the evolution and factors of secondary inorganic aerosols based on two pollution incidences in Nanjing in June 2014. A significant characteristic of air pollution complex with the coexistence of higher concentrations of both PM2.5 and ozone is observed. In the earlier stage of the pollution episode, ozone concentrations were high, which could exceed 250, triggering a stronger oxidation in the atmosphere and a higher production potential of nitric acid that leads to the quick production of nitrate. In the later period of the pollution episode, relative humidity played an essential role. An increase in relative humidity would result in a sharp decrease in the theoretical product of the partial pressures of NH3 and HNO3, especially when relative humidity exceeds the mutual deliquesce relative humidity that makes it easier to form nitrate. The difference in the theoretical and observational partial pressure product could characterize the evolution of nitrate perfectly.

14.
Sci Bull (Beijing) ; 62(22): 1547-1554, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659433

RESUMO

Based on the field measurements in Barrow, Alaska within the period of April-May 2015, we investigate the sources and variations of elemental carbon (EC) and organic carbon (OC) in the surface layer of snowpack on sea ice, and estimate their effects on the sea ice albedo. Results show that the snow OC in Barrow are from natural sources (e.g. terrestrial higher plants and micro-organisms) mainly, as well as biomass burning (e.g. forest fires and straw combustion) as an important part. Both EC and OC can accumulate at the snow surface with snow melt. The variations in EC and OC and liquid water content in the snow layer are well consistent during the snow-melting period. A higher rate of snow melt implied a more efficient enrichment of EC and OC. In the last phase of snow melt, the concentration increased to a maximum of 16.2 ng/g for EC and 128 ng/g for OC, which is ∼10 times larger than those before snow melt onset. Except for the dominant influence of melt amplification mechanism, the variation in concentrations of EC and OC could be disturbed by the air temperature fluctuation and snowfall. Our study indicates that the light-absorbing impurities contributed 1.6%-5.1% to the reduction in sea ice albedo with melt during the measurement period. The significant period of light-absorbing impurities influencing on sea ice albedo begins with the rapid melting of overlying snow and ends before the melt ponds formed widely, which lasted for about 10 days in Barrow, 2015.

15.
Environ Pollut ; 221: 168-179, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28012665

RESUMO

An on-line source-tagged model coupled with an air quality model (Nested Air Quality Prediction Model System, NAQPMS) was applied to estimate source contributions of primary and secondary sulfate, nitrate and ammonium (SNA) during a representative winter period in Shanghai. This source-tagged model system could simultaneously track spatial and temporal sources of SNA, which were apportioned to their respective primary precursors in a simulation run. The results indicate that in the study period, local emissions in Shanghai accounted for over 20% of SNA contributions and that Jiangsu and Shandong were the two major non-local sources. In particular, non-local emissions had higher contributions during recorded pollution periods. This suggests that the transportation of pollutants plays a key role in air pollution in Shanghai. The temporal contributions show that the emissions from the "current day" (emission contribution from the current day during which the model was simulating) contributed 60%-70% of the sulfate and ammonium concentrations but only 10%-20% of the nitrate concentration, while the previous days' contributions increased during the recorded pollution periods. Emissions that were released within three days contributed over 85% averagely for SNA in January 2013. To evaluate the source-tagged model system, the results were compared by sensitivity analysis (emission perturbation of -30%) and backward trajectory analysis. The consistency of the comparison results indicated that the source-tagged model system can track sources of SNA with reasonable accuracy.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Compostos de Amônio/análise , Monitoramento Ambiental/métodos , Modelos Químicos , Nitratos/análise , Sulfatos/análise , Poluição do Ar/análise , China , Modelos Lineares , Óxidos de Nitrogênio/análise , Material Particulado/análise , Estações do Ano
16.
Sci Total Environ ; 572: 289-300, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27505262

RESUMO

Understanding the formation of tropospheric ozone (O3) and secondary particulates is essential for controlling secondary pollution in megacities. Intensive observations were conducted to investigate the evolution of O3, nitrate (NO3-), sulfate (SO42-) and oxygenated organic aerosols ((OOAs), a proxy for secondary organic aerosols) and the interactions between O3, NOx oxidation products (NOz) and OOA in urban Beijing in August 2012. The O3 concentrations exhibited similar variations at both the urban and urban background sites in Beijing. Regarding the O3 profile, the O3 concentrations increased with increasing altitude. The peaks in O3 on the days exceeding the 1h or 8h O3 standards (polluted days) were substantially wider than those on normal days. Significant increases in the NOz mixing ratio (i.e., NOy - NOx) were observed between the morning and early afternoon, which were consistent with the increasing oxidant level. A discernable NO3- peak was also observed in the morning on the polluted days, and this peak was attributed to vertical mixing and strong photochemical production. In addition, a SO42- peak at 18:00 was likely caused by a combination of local generation and regional transport. The OOA concentration cycle exhibited two peaks at approximately 10:00 and 19:00. The OOA concentrations were correlated well with SO42- ([OOA]=0.55×[SO42-]+2.1, r2=0.69) because they both originated from secondary transformations that were dependent on the ambient oxidization level and relative humidity. However, the slope between OOA and SO42- was only 0.35, which was smaller than the slope observed for all of the OOA and SO42- data, when the RH ranged from 40 to 50%. In addition, a photochemical episode was selected for analysis. The results showed that regional transport played an important role in the evolution of the investigated secondary pollutants. The measured OOA and Ox concentrations were well correlated at the daily scale, whereas the hourly OOA and Ox concentrations were insignificantly correlated in urban Beijing. The synoptic situation and the differences in the VOC oxidation contributing to O3 and SOAs may have resulted in the differences among the correlations between OOA and Ox at different time scale. We calculated OOA production rates using the photochemical age (defined as -log10(NOx/NOy)) in urban plumes. The CO-normalized OOA concentration increased with increasing photochemical age, with production rates ranging from 1.1 to 8.5µgm-3ppm-1h-1 for the plume from the NCP.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Pequim , Monitoramento Ambiental , Compostos Orgânicos/análise , Estações do Ano
17.
Huan Jing Ke Xue ; 31(7): 1444-50, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20825008

RESUMO

Ambient O3, NOx, NOy, and CO were measured at the Shangdianzi regional background station from 26 March to 9 October 2008, and VOCs samples were taken and analyzed. This paper uses the data to obtain the ozone production efficiency (OPE) at Shangdianzi and studies the relationship of OPE with NO, and VOCs. In addition, the potential impact from the dry deposition of NOx oxidation products on the calculated OPE was estimated and tentatively corrected. Based on this study, the daily OPE varied in the range of 0.2-21.1, with an average of 4.9 +/- 3.6. An overall OPE average of 4.3 +/- 1.5 can be obtained. The dependence of OPE on the NO, concentration can be described using an empirical parabolic function. If the concentration of NOx is lower than 14 x 10(-9), OPE increases with NO,; while if the concentration of NOx is higher than 14 x 10(-9), OPE decreases with NOx. The correlation analysis indicates that the concentrations of aromatics and OVOCs are positively correlated to OPE. Dry deposition of HNO3 and other NO, oxidation products may significantly impact the calculated OPE values, leading to overestimate. It is possible to correct such overestimate using the NOy/CO ratios obtained at an urban site and at Shangdianzi. However, this correction is less rigorous and the corrected OPE data remain to be validated. The uncorrected data can be viewed as the upper limit of the real OPE.


Assuntos
Poluentes Atmosféricos/química , Óxidos de Nitrogênio/química , Ozônio/análise , Compostos Orgânicos Voláteis/química , Poluição do Ar/análise , China , Monitoramento Ambiental , Oxidantes Fotoquímicos , Ozônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...