Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Arch Med Sci ; 19(6): 1709-1713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058701

RESUMO

Introduction: The present study was conducted to explore the expression of serum inflammatory cytokines and oxidative stress markers in patients with coronary heart disease (CHD), with an attempt to analyze their relationship with the coronary artery calcium score (CACS) by coronary computed tomography angiography (CCTA). Material and methods: It total 81 patients with coronary heart disease and 81 healthy adults were included as the observation group and the control group, respectively. The levels of serum interleukin (IL)-6 and IL-12 of the two groups were detected by ELISA, and serum superoxide dismutase (SOD) was detected by the hydroxylamine oxidation method. Micro-RNA-497-5p (miR-497-5p) was screened out as a possible new CHD biomarker and its serum level was measured by real-time fluorescence quantitative PCR. The CACS of patients in the observation group was calculated by the Agatston method to analyze the correlation between the abovementioned indexes and CACS. Results: With increase in the number of CHD lesions, the levels of IL-6, IL-12 and miR-497-5p rose gradually while the level of SOD decreased gradually. In the observation group, IL-6, IL-12 and miR-497-5p were positively correlated with CACS while SOD was negatively correlated with CACS. Conclusions: Abnormal expression levels of serum IL-6, IL-12, SOD and miR-497-5p may be able to reveal the severity of the disease, and the combination with CACS is of potential value in terms of evaluating the condition of patients harboring coronary heart disease.

2.
Am J Transl Res ; 15(1): 392-406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777848

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) have been shown to play an important role in myocardial ischemia/reperfusion (MI/R) injury. This study aimed to determine the role of miR-432 in MI/R injury. METHODS: We established a MI/R injury model by ligation/untying of the left anterior descending coronary artery, and used viral infection to regulate gene expression, such as that of miR-432 in vitro and in vivo, and used RT-qPCR to detect the expression of the gene at mRNA level. Finally, western blotting and immunochemistry analyses were used to determine the protein level. RESULTS: The results of this study show that miR-432 is upregulated in the heart following MI/R injury and that miR-432 overexpression showed a significant decrease, while miR-432 knockdown showed a significant increase in the ratio of the infarct area (IA) to the area at risk (AAR) and levels of serum creating phosphokinase (CPK). Moreover, miR-432 augmented the activation of the ß-catenin pathway and decreased the rate of apoptosis in the mice heart at 24 hours after MI/R injury by targeting RBM5. At the same time, miR-432 overexpression enhanced HIF-1α activation, while ß-catenin deletion attenuated HIF-1α activation induced by miR-432 overexpression. Importantly, ß-catenin and HIF-1α knockdown significantly increased the rate of apoptosis and the ratio of IA to AAR and levels of serum CPK induced by miR-432 overexpression at 24 hours after MI/R injury. miR-432 overexpression strongly decreased levels of SOD and GSH-PX activity, and increased levels of MDA activity and the expression of the gp91phox protein in the mice hearts at 24 hours after MI/R injury, while miR-432 knockdown exerted an opposite effect. miR-432 was also found to have increased NRF2 protein levels by targeting KEAP1 protein expression. NRF2 knockdown reversed the downregulation of the levels of gp91phox protein and MDA, while it also reversed the upregulation of the levels of SOD and GSH-PX induced by miR-432 overexpression in the heart of the mice at 24 hours after MI/R injury. CONCLUSION: miR-432 protects against MI/R injury by activating the ß-catenin/HIF-1α pathway and augmenting NRF2-mediated anti-oxidative stress.

3.
J Cell Mol Med ; 25(11): 5050-5059, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939297

RESUMO

Nesfatin-1 (encoded by NUCB2) is a cardiac peptide possessing protective activities against myocardial ischaemia/reperfusion (MI/R) injury. However, the regulation of NUCB2/nesfatin-1 and the molecular mechanisms underlying its roles in MI/R injury are not clear. Here, by investigating a mouse MI/R injury model developed with transient myocardial ischaemia followed by reperfusion, we found that the levels of NUCB2 transcript and nesfatin-1 amount in the heart were both decreased, suggesting a transcriptional repression of NUCB2/nesfatin-1 in response to MI/R injury. Moreover, cardiac nesfatin-1 restoration reduced infarct size, troponin T (cTnT) level and myocardial apoptosis, supporting its cardioprotection against MI/R injury in vivo. Mechanistically, the Akt/ERK pathway was activated, and in contrast, endoplasmic reticulum (ER) stress was attenuated by nesfatin-1 following MI/R injury. In an in vitro system, similar results were obtained in nesfatin-1-treated H9c2 cardiomyocytes with hypoxia/reoxygenation (H/R) injury. More importantly, the treatment of wortmannin, an inhibitor of Akt/ERK pathway, abrogated nesfatin-1 effects on attenuating ER stress and H/R injury in H9c2 cells. Furthermore, nesfatin-1-mediated protection against H/R injury also vanished in the presence of tunicamycin (TM), an ER stress inducer. Lastly, Akt/ERK inhibition reversed nesfatin-1 effects on mouse ER stress and MI/R injury in vivo. Taken together, these findings demonstrate that NUCB2/nesfatin-1 inhibits MI/R injury through attenuating ER stress, which relies on Akt/ERK pathway activation. Hence, our study provides a molecular basis for understanding how NUCB2/nesfatin-1 reduces MI/R injury.


Assuntos
Estresse do Retículo Endoplasmático , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Nucleobindinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proliferação de Células , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Nucleobindinas/genética , Proteínas Proto-Oncogênicas c-akt/genética
4.
J Invest Surg ; 34(1): 64-69, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31109212

RESUMO

Background: Whether there is a quantitative correlation between platelet microparticles (PMPs)/calpain and infarction area is still unclear. Whether present antiplatelet agents can improve myocardial infarction by influencing PMPs need to be revealed. The object of our study was to answer those questions. Methods: Male Wistar rats were used for all studies. All rats were randomly divided into five groups: sham-operated group, myocardial infarction group (blank control group), aspirin intervention group, aspirin combined with clopidogrel intervention group, and aspirin combined with ticagrelor intervention group. Venous blood and hearts were collected at day 7 following MI. ELISA was applied to detect PMPs level. Infarction size was determined by TTC staining method. The comparisons of multiple means were tested with analysis of variance. And the two-two comparisons among the means were done by Student-Newman-Keuls and LSD method. Results: PMPs level and infarction area did not differ between aspirin combined with clopidogrel intervention group and aspirin combined with ticagrelor intervention group. However, significant differences were detected between any two other groups. PMPs were decreased more in dual antiplatelet intervention group. Pearson correlation analysis showed a strong correlation between PMPs and infarction area (r = 0.90) as well as calpain 10 and infarction area (r = 0.84). We created a regression model: y = 4.61 + 0.28*x (y: infarction area, x: PMPs) to assess myocardial infarction area by PMPs level. Conclusions: Antiplatelet agents may decrease infarction areas by modifying PMPs. There was a strong correlation between PMPs and infarction area. Therefore, PMPs could be used as a tool to assess infarction area.


Assuntos
Infarto do Miocárdio , Inibidores da Agregação Plaquetária , Animais , Aspirina , Clopidogrel , Masculino , Ratos , Ratos Wistar
5.
Medicine (Baltimore) ; 97(45): e13010, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30407292

RESUMO

OBJECTIVE: Both Aspirin and Clopidogrel are considered as effective drugs in decreasing ischemic events, which potentially contribute to a promising application regarding the cardiovascular events. In the present study, we evaluated the efficacy of the combination of both Clopidogrel and Aspirin to determine the influence among inflammatory factors, cardiac function, and treatment outcome of patients suffering from ST-segment elevation myocardial infarction (STEMI) in the Hebei province of China. METHODS: To compare the efficacy of this combination therapy with a single Aspirin treatment, we experimented in 68 patients with the administration of both Clopidogrel and Aspirin as well as another 68 patients administered only with Aspirin. An enzyme-linked immunosorbent assay was used to measure the expression of inflammatory factors, thereby evaluating the effect on inflammation. In addition, a series of indexes related to cardiac function and renal function were monitored by use of a color Doppler ultrasound and an automatic biochemical analyzer, respectively. Myocardial injury-related indicators were detected. A multivariate logistic regression analysis was performed so we could identify potential risk factors. In addition, both postoperative hemorrhages and cardiac events were observed to evaluate the treatment outcome of patients with STEMI. RESULTS: Initially, the treatment outcome revealed a better efficacy in patients treated with the combination of both Clopidogrel and Aspirin, with the patients also showing more obviously alleviated myocardial injury, better cardiac and renal functions with lower serum levels of inflammatory factors. The lower incidence of postinfarction angina, recurrent myocardial infarction, stroke, and death also provide evidence that patients showed a better outcome after treatment with both Clopidogrel and Aspirin. CONCLUSION: Taken together, the combination therapy of Clopidogrel and Aspirin provided a better improvement on both the cardiac function and outcome of STEMI patients in the Hebei province of China, with reduced inflammation as well.


Assuntos
Aspirina/administração & dosagem , Inibidores da Agregação Plaquetária/administração & dosagem , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Ticlopidina/análogos & derivados , Idoso , Clopidogrel , Citocinas/sangue , Quimioterapia Combinada , Feminino , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Ticlopidina/administração & dosagem , Resultado do Tratamento
7.
Vascul Pharmacol ; 83: 90-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27235860

RESUMO

Increasing evidences support that PGC-1α participates in regulating endothelial homeostasis, in part by mediating endothelial nitric oxide (NO) synthase (eNOS) activity and NO production. However, the molecular mechanisms by which PGC-1α regulates eNOS activity are not completely understood. In the present study, we investigated the effects of PGC-1α on eNOS dysfunction and further explore the underlying mechanisms. The results showed that PGC-1α expression was downregulated after AngiotensinII (AngII) treatment and paralleled with the decreased NO generation in human aortic endothelial cells. Overexpression of PGC-1α with adenovirus or pharmacological agonist ameliorated AngII-induced the decrease of NO generation, evidenced by the restoration of cGMP and nitrite concentration. Rather than affecting eNOS expression and uncoupling, PGC-1α inhibited AngII-induced decrease of eNOS serine 1177 phosphorylation through activation of PI3K/Akt signaling. In addition, PGC-1α overexpression suppressed AngII-induced the increase of PP2A-A/eNOS interaction and PP2A phosphatase activity, with a concomitant decrease in PP2A phosphorylation, leading to eNOS serine 1177 phosphorylation. However, pharmacological inhibition of PI3K/Akt signaling blunted the observed effect of PGC-1α on PP2A activity. Taken together, our findings suggest that PGC-1α overexpression improves AngII-induced eNOS dysfunction and that improved eNOS dysfunction is associated with activated PI3K/Akt pathway, impaired PP2A activity and reduced PP2A-A/eNOS association. These date indicate that forced PGC-1α expression may be a novel therapeutic approach for endothelial dysfunction.


Assuntos
Angiotensina II/farmacologia , Aorta/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Aorta/enzimologia , Células Cultivadas , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Humanos , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/agonistas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...