Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573307

RESUMO

The perinuclear theca (PT) is a dense cytoplasmic web encapsulating the sperm nucleus. The physiological roles of PT in sperm biology and the clinical relevance of variants of PT proteins to male infertility are still largely unknown. We reveal that cylicin-1, a major constituent of the PT, is vital for male fertility in both mice and humans. Loss of cylicin-1 in mice leads to a high incidence of malformed sperm heads with acrosome detachment from the nucleus. Cylicin-1 interacts with itself, several other PT proteins, the inner acrosomal membrane (IAM) protein SPACA1, and the nuclear envelope (NE) protein FAM209 to form an 'IAM-cylicins-NE' sandwich structure, anchoring the acrosome to the nucleus. WES (whole exome sequencing) of more than 500 Chinese infertile men with sperm head deformities was performed and a CYLC1 variant was identified in 19 patients. Cylc1-mutant mice carrying this variant also exhibited sperm acrosome/head deformities and reduced fertility, indicating that this CYLC1 variant most likely affects human male reproduction. Furthermore, the outcomes of assisted reproduction were reported for patients harbouring the CYLC1 variant. Our findings demonstrate a critical role of cylicin-1 in the sperm acrosome-nucleus connection and suggest CYLC1 variants as potential risk factors for human male fertility.


Assuntos
Acrossomo , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Infertilidade Masculina/genética , Proteínas de Membrana/genética , Sêmen , Cabeça do Espermatozoide , Espermatozoides
2.
Cell Mol Life Sci ; 81(1): 118, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448737

RESUMO

Tektins are microtubule inner proteins (MIPs) and localize at the inside lumen of doublet microtubules (DMTs) of cilia/flagella. TEKTIP1, a newly identified protein by cryo-electron microscopy (cryo-EM), is proposed to be localized at the center of the tektin bundle and hypothesized to recruit tektins or stabilize the bundle. However, the physiological role of TEKTIP1 is unknown. In this study, we generated Tektip1-knockout (Tektip1-/-) mice and showed that they were male subfertile primarily due to reduced sperm motility. A high percentage of sperm from Tektip1-/- mice showed moderately disorganized axoneme structures and abnormal flagellar waveforms. TEKTIP1 predominately interacted with TEKT3 among tektins. Loss of TEKTIP1 partially disturbed the organization of tektin bundle by mainly affecting the native status of TEKT3 and its interaction with other tektins. Collectively, our study reveals the physiological role and potential molecular mechanism of TEKTIP1 in axonemal structure and sperm motility, highlights the importance of MIPs in stabilizing DMTs, and suggests a potential relevance of TEKTIP1 deficiency to human asthenospermia. Tektip1-/- mice will be an excellent animal model to study the DMT organization of sperm flagella using cryo-EM in future.


Assuntos
Axonema , Proteínas dos Microtúbulos , Sêmen , Humanos , Masculino , Animais , Camundongos , Feminino , Microscopia Crioeletrônica , Motilidade dos Espermatozoides , Espermatozoides , Flagelos
3.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126872

RESUMO

Male infertility is a worldwide population health concern. Asthenoteratozoospermia is a common cause of male infertility, but its etiology remains incompletely understood. No evidence indicates the relevance of CFAP52 mutations to human male infertility. Our whole-exome sequencing identified compound heterozygous mutations in CFAP52 recessively cosegregating with male infertility status in a non-consanguineous Chinese family. Spermatozoa of CFAP52-mutant patient mainly exhibited abnormal head-tail connection and deformed flagella. Cfap52-knockout mice resembled the human infertile phenotype, showing a mixed acephalic spermatozoa syndrome (ASS) and multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. The ultrastructural analyses further revealed a failure of connecting piece formation and a serious disorder of '9+2' axoneme structure. CFAP52 interacts with a head-tail coupling regulator SPATA6 and is essential for its stability. Expression of microtubule inner proteins and radial spoke proteins were reduced after the CFAP52 deficiency. Moreover, CFAP52-associated male infertility in humans and mice could be overcome by intracytoplasmic sperm injection (ICSI). The study reveals a prominent role for CFAP52 in sperm development, suggesting that CFAP52 might be a novel diagnostic target for male infertility with defects of sperm head-tail connection and flagella development.


Assuntos
Infertilidade Masculina , Sêmen , Animais , Humanos , Masculino , Camundongos , Proteínas do Citoesqueleto , Flagelos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Camundongos Knockout , Proteínas dos Microtúbulos , Cabeça do Espermatozoide , Cauda do Espermatozoide
4.
EBioMedicine ; 93: 104675, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37352829

RESUMO

BACKGROUND: Male infertility is a worldwide population health concern, but its aetiology remains largely understood. Although CFAP70 variants have already been reported in two oligo-astheno-teratozoospermia (OAT) individuals by sequencing, animal evidence to support CFAP70 as a credible OAT-pathogenic gene is lacking. METHOD: Cfap70-KO mice were generated to explore the physiological role of CFAP70. CFAP70 variants were detected in infertile men with OAT by whole exome sequencing and Sanger sequencing confirmation. Cfap70-truncated mice were further generated to explore the pathogenicity of the nonsense variant of CFAP70 identified in the proband. FINDINGS: Here, we demonstrate that Cfap70-KO mice are sterile mainly due to OAT and further identify a Chinese infertile man carrying a homozygous nonsense variant (c.2962C > T/p.R988X) of CFAP70. Cfap70-truncated mice lacking 5-8 tetratricopeptide repeats (TPRs) mimic the patient's symptoms. CFAP70 is required for the biogenesis of spermatid flagella partially by regulating the expression of OAT-associated proteins (e.g., QRICH2), assisting the cytoplasmic preassembly of the calmodulin- and radial spoke-associated complex (CSC), and controlling the manchette localization of axoneme-related proteins. Moreover, we suggest that CFAP70-associated male infertility could be overcome by intracytoplasmic sperm injection (ICSI) treatment. INTERPRETATION: Overall, we demonstrate that CFAP70 is necessary to assemble spermatid flagella and that CFAP70 gene could be used as a diagnostic target for male infertility with OAT in the clinic. FUNDING: This study was supported by the National Key Research and Development Project (2019YFA0802101 to S.C), Open Fund of Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education (to S.C), Central Government to Guide Local Scientific and Technological Development (ZY21195023 to B.W), and Basic Research Projects of Central Scientific Research Institutes (to B.W).


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Masculino , Animais , Camundongos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/patologia
5.
J Pathol ; 252(2): 101-113, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32617978

RESUMO

The histone demethylase KDM4B functions as a key co-activator for the androgen receptor (AR) and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 methylation marks. Constitutively active androgen receptor confers anti-androgen resistance in advanced prostate cancer. However, the role of KDM4B in resistance to next-generation anti-androgens and the mechanisms of KDM4B regulation are poorly defined. Here we found that KDM4B is overexpressed in enzalutamide-resistant prostate cancer cells. Overexpression of KDM4B promoted recruitment of AR to the c-Myc (MYC) gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA, which regulates the sensitivity to next-generation AR-targeted therapy. Inhibition of KDM4B significantly inhibited prostate tumor cell growth in xenografts, and improved enzalutamide treatments through suppression of c-Myc. Clinically, KDM4B expression was found upregulated and to correlate with prostate cancer progression and poor prognosis. Our results revealed a novel mechanism of anti-androgen resistance via histone demethylase alteration which could be targeted through inhibition of KDM4B to reduce AR-dependent c-Myc expression and overcome resistance to AR-targeted therapies. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Adenocarcinoma/patologia , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
6.
Cancer Sci ; 111(5): 1567-1581, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32133742

RESUMO

The histone demethylase lysine-specific demethylase 4A (KDM4A) is reported to be overexpressed and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 or H3K36 methylation marks. However, the biological role and mechanism of KDM4A in prostate cancer (PC) remain unclear. Herein, we reported KDM4A expression was upregulation in phosphatase and tensin homolog knockout mouse prostate tissue. Depletion of KDM4A in PC cells inhibited their proliferation and survival in vivo and vitro. Further studies reveal that USP1 is a deubiquitinase that regulates KDM4A K48-linked deubiquitin and stability. Interestingly, we found c-Myc was a key downstream effector of the USP1-KDM4A/androgen receptor axis in driving PC cell proliferation. Notably, upregulation of KDM4A expression with high USP1 expression was observed in most prostate tumors and inhibition of USP1 promotes PC cells response to therapeutic agent enzalutamide. Our studies propose USP1 could be an anticancer therapeutic target in PC.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Camundongos Mutantes , Nitrilas , PTEN Fosfo-Hidrolase/deficiência , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
7.
BMC Cancer ; 14: 630, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168062

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a widely expressed cytokine involved in a variety of cellular processes including cell cycle regulation and the control of proliferation. Overexpression of MIF has been reported in a number of cancer types and it has previously been shown that MIF is upregulated in melanocytic tumours with the highest expression levels occurring in malignant melanoma. However, the clinical significance of high MIF expression in melanoma has not been reported. METHODS: MIF expression was depleted in human melanoma cell lines using siRNA-mediated gene knockdown and effects monitored using in vitro assays of proliferation, cell cycle, apoptosis, clonogenicity and Akt signalling. In silico analyses of expression microarray data were used to correlate MIF expression levels in melanoma tumours with overall patient survival using a univariate Cox regression model. RESULTS: Knockdown of MIF significantly decreased proliferation, increased apoptosis and decreased anchorage-independent growth. Effects were associated with reduced numbers of cells entering S phase concomitant with decreased cyclin D1 and CDK4 expression, increased p27 expression and decreased Akt phosphorylation. Analysis of clinical outcome data showed that MIF expression levels in primary melanoma were not associated with outcome (HR = 1.091, p = 0.892) whereas higher levels of MIF in metastatic lesions were significantly associated with faster disease progression (HR = 2.946, p = 0.003 and HR = 4.600, p = 0.004, respectively in two independent studies). CONCLUSIONS: Our in vitro analyses show that MIF functions upstream of the PI3K/Akt pathway in human melanoma cell lines. Moreover, depletion of MIF inhibited melanoma proliferation, viability and clonogenic capacity. Clinically, high MIF levels in metastatic melanoma were found to be associated with faster disease recurrence. These findings support the clinical significance of MIF signalling in melanoma and provide a strong rationale for both targeting and monitoring MIF expression in clinical melanoma.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Oxirredutases Intramoleculares/genética , Sistema de Sinalização das MAP Quinases , Fatores Inibidores da Migração de Macrófagos/genética , Melanoma/genética , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Prognóstico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...