Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
2.
Eur J Neurol ; : e16374, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853763

RESUMO

OBJECTIVE: Little is known about amyotrophic lateral sclerosis (ALS)-nonspecific cognitive deficits - most notably memory disturbance - and their biological underpinnings. We investigated the associations of the Alzheimer's disease (AD) genetic risk factor APOE and cerebrospinal fluid (CSF) biomarkers Aß and tau proteins with cognitive and motor phenotype in ALS. METHODS: APOE haplotype was determined in 281 ALS patients; for 105 of these, CSF levels of Aß42, Aß40, total tau (T-tau), and phosphorylated tau (P-tau181) were quantified by chemiluminescence enzyme immunoassay (CLEIA). The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was employed to evaluate the neuropsychological phenotype. RESULTS: APOE-E4 allele was associated with worse ECAS memory score (median, 14.0 in carriers vs. 16.0 in non-carriers) and lower CSF Aß42 (-0.8 vs. 0.1, log-transformed values) and Aß42/40 ratio (-0.1 vs. 0.3). Some 37.1% of ALS patients showed low Aß42 levels, possibly reflecting cerebral Aß deposition. While lower Aß42/40 correlated with lower memory score (ß = 0.20), Aß42 positively correlated with both ALS-specific (ß = 0.24) and ALS-nonspecific (ß = 0.24) scores. Although Aß42/40 negatively correlated with T-tau (ß = -0.29) and P-tau181 (ß = -0.33), we found an unexpected positive association of Aß42 and Aß40 with both tau proteins. Regarding motor phenotype, lower levels of Aß species were associated with lower motor neuron (LMN) signs (Aß40: ß = 0.34; Aß42: ß = 0.22). CONCLUSIONS: APOE haplotype and CSF Aß biomarkers are associated with cognitive deficits in ALS and particularly with memory impairment. This might partly reflect AD-like pathophysiological processes, but additional ALS-specific mechanisms could be involved.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38937074

RESUMO

BACKGROUND: Whether statin use after spontaneous intracerebral haemorrhage (ICH) increases the risk of recurrent ICH is uncertain. METHODS: In the setting of the Multicentric Study on Cerebral Haemorrhage in Italy we followed up a cohort of 30-day ICH survivors, consecutively admitted from January 2002 to July 2014, to assess whether the use of statins after the acute event is associated with recurrent cerebral bleeding. RESULTS: 1623 patients (mean age, 73.9±10.3 years; males, 55.9%) qualified for the analysis. After a median follow-up of 40.5 months (25th to 75th percentile, 67.7) statin use was not associated with increased risk of recurrent ICH either in the whole study group (adjusted HR, 0.99; 95% CI 0.64 to 1.53) or in the subgroups defined by haematoma location (deep ICH, adjusted HR, 0.74; 95% CI 0.35 to 1.57; lobar ICH, adjusted HR, 1.09; 95% CI 0.62 to 1.90), intensity of statins (low-moderate intensity statins, adjusted HR, 0.93; 95% CI 0.58 to 1.49; high-intensity statins, adjusted HR, 1.48; 95% CI 0.66 to 3.31) and use of statins before the index event (adjusted HR, 0.66; 95% CI 0.38 to 1.17). CONCLUSIONS: Statin use appears to be unrelated to the risk of ICH recurrence.

4.
J Pers Med ; 14(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38929846

RESUMO

Day 3 embryo quality is a predictor of in vitro fertilization (IVF) success rates in cleavage-stage embryo transfer. However, the association between day 3 embryo quality and clinical outcomes in blastocyst transfer policy is largely unknown. This retrospective study included 1074 frozen-thawed single day 5/6 blastocyst transfers between January 2019 and December 2022. Three groups were assessed depending on whether the transferred blastocyst derived from a top-quality, good-quality, or poor-quality embryo at day 3. The analysis was conducted independently for each blastocyst quality group (top, good, and poor) using multivariable logistic regression. We applied a Factorial Analysis of Mixed Data (FAMD) to reduce the potential collinearity between the covariates used in the model. All the blastocysts included in this study were obtained from the first ICSI freeze-all cycles. The cleavage and blastocysts stages were assessed between 67 ± 0.5 (day 3), 115 ± 0.5 (day 5), and 139 ± 0.5 (day 6) hours post-insemination (hpi), respectively. After adjusting for the day of transfer (day 5 or day 6) and FAMD dimensions, no statistical differences in a ß-HCG, clinical pregnancy, and live birth were observed among the same-quality blastocysts derived from different day 3 embryo quality groups (top = A, good = B, and poor = C). Our findings showed that a day 3 embryo quality assessment may be unnecessary in planned freeze-all blastocyst cycles.

5.
NPJ Genom Med ; 9(1): 21, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519481

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in the cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 8 severe de novo pdSNVs in genes not previously implicated in ASD (AGPAT3, IRX5, MGAT5B, RAB8B, RAP1A, RASAL2, SLC9A1, YME1L1) highlighted promising candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, although this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in ASD/NDD candidate genes not yet established. In conclusion, our study highlights promising ASD candidate genes and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38385826

RESUMO

Loss-of-function CHD2 (chromodomain helicase DNA-binding protein 2) mutations are associated with a spectrum of neurodevelopmental disorders often including early-onset generalized seizures, photosensitivity, and epileptic encephalopathies. Patients show psychomotor delay/intellectual disability (ID), autistic features, and behavior disorders, such as aggression and impulsivity. Most reported cases are sporadic with description of germline mosaicism only in two families. We detect the first case of parental gonosomal CHD2 mosaicism disclosed by two brothers showing mild ID, born to healthy parents. The eldest brother has a history of drug-controlled generalized tonic-clonic seizures and displays sleep disorder and aggressive behavior suggestive of Smith-Magenis syndrome (SMS). Analysis of brothers' DNAs by next-generation sequencing (NGS) custom gene panel for pediatric epilepsy and/or ID disclosed in both the same pathogenic CHD2 variant. Additional NGS experiment on genomic DNA from parents' peripheral blood and from buccal swab raised the suspicion of low-grade gonosomal mosaicism in the unaffected mother subsequently confirmed by digital polymerase chain reaction (dPCR). This report underlines as worthwhile CHD2 screening in individuals presenting ID/developmental delay, with/without epilepsy, and behavior and sleep disorders suggestive of SMS. Detecting a CHD2 variant should prime testing probands' parents by NGS coupled to dPCR on different tissues to exclude/confirm gonosomal mosaicism and define the recurrence risk.

7.
Front Aging Neurosci ; 15: 1272135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090719

RESUMO

During the last decades, our knowledge about the genetic architecture of sporadic amyotrophic lateral sclerosis (sALS) has significantly increased. However, besides the recognized genetic risk factors, also the environment is supposed to have a role in disease pathogenesis. Epigenetic modifications reflect the results of the interaction between environmental factors and genes and may play a role in the development and progression of ALS. A recent epigenome-wide association study (EWAS) in blood identified differentially methylated positions mapping to 42 genes involved in cholesterol biosynthesis and immune-related pathways. Here we performed a genome-wide DNA methylation analysis in the blood of an Italian cohort of 61 sALS patients and 61 healthy controls. Initially, a conventional genome-wide association analysis was performed, and results were subsequently integrated with the findings from the previous EWAS using a meta-analytical approach. To delve deeper into the significant outcomes, over-representation analysis (ORA) was employed. Moreover, the epigenetic signature obtained from the meta-analysis was examined to determine potential associations with chemical compounds, utilizing the Toxicogenomic Database. Expanding the scope of the epigenetic analysis, we explored both epigenetic drift and rare epivariations. Notably, we observed an elevated epigenetic drift in sALS patients compared to controls, both at a global and single gene level. Interestingly, epigenetic drift at a single gene level revealed an enrichment of genes related to the neurotrophin signaling pathway. Moreover, for the first time, we identified rare epivariations exclusively enriched in sALS cases associated with 153 genes, 88 of whom with a strong expression in cerebral areas. Overall, our study reinforces the evidence that epigenetics may contribute to the pathogenesis of ALS and that epigenetic drift may be a useful diagnostic marker. Moreover, this study suggests the potential role of epivariations in ALS.

8.
Res Sq ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961520

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We have performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 9 severe de novo pdSNVs in genes not previously implicated in ASD (RASAL2, RAP1A, IRX5, SLC9A1, AGPAT3, MGAT3, RAB8B, MGAT5B, YME1L1), highlighted novel candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, but this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in new ASD/NDD candidates. In conclusion, our study strengthens the role of BRSK2 and other neurodevelopmental genes in ASD risk, highlights novel candidates and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.

9.
Evol Med Public Health ; 11(1): 397-414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954982

RESUMO

Background and objectives: Epigenetic estimators based on DNA methylation levels have emerged as promising biomarkers of human aging. These estimators exhibit natural variations across human groups, but data about indigenous populations remain underrepresented in research. This study aims to investigate differences in epigenetic estimators between two distinct human populations, both residing in the Gran Chaco region of Argentina, the Native-American Wichí, and admixed Criollos who are descendants of intermarriages between Native Americans and the first European colonizers, using a population genetic approach. Methodology: We analyzed 24 Wichí (mean age: 39.2 ± 12.9 yo) and 24 Criollos (mean age: 41.1 ± 14.0 yo) for DNA methylation levels using the Infinium MethylationEPIC (Illumina) to calculate 16 epigenetic estimators. Additionally, we examined genome-wide genetic variation using the HumanOmniExpress BeadChip (Illumina) to gain insights into the genetic history of these populations. Results: Our results indicate that Native-American Wichí are epigenetically older compared to Criollos according to five epigenetic estimators. Analyses within the Criollos population reveal that global ancestry does not influence the differences observed, while local (chromosomal) ancestry shows positive associations between specific SNPs located in genomic regions over-represented by Native-American ancestry and measures of epigenetic age acceleration (AgeAccelHannum). Furthermore, we demonstrate that differences in population ecologies also contribute to observed epigenetic differences. Conclusions and implications: Overall, our study suggests that while the genomic history may partially account for the observed epigenetic differences, non-genetic factors, such as lifestyle and ecological factors, play a substantial role in the variability of epigenetic estimators, thereby contributing to variations in human epigenetic aging.

10.
J Am Heart Assoc ; 12(17): e029100, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37589201

RESUMO

Background Sudden infant death syndrome (SIDS) is the leading cause of death up to age 1. Sudden unexplained death in childhood (SUDC) is similar but affects mostly toddlers aged 1 to 4. SUDC is rarer than SIDS, and although cardiogenetic testing (molecular autopsy) identifies an underlying cause in a fraction of SIDS, less is known about SUDC. Methods and Results Seventy-seven SIDS and 16 SUDC cases underwent molecular autopsy with 25 definitive-evidence arrhythmia-associated genes. In 18 cases, another 76 genes with varying degrees of evidence were analyzed. Parents were offered cascade screening. Double-blind review of clinical-genetic data established genotype-phenotype correlations. The yield of likely pathogenic variants in the 25 genes was higher in SUDC than in SIDS (18.8% [3/16] versus 2.6% [2/77], respectively; P=0.03), whereas novel/ultra-rare variants of uncertain significance were comparably represented. Rare variants of uncertain significance and likely benign variants were found only in SIDS. In cases with expanded analyses, likely pathogenic/likely benign variants stemmed only from definitive-evidence genes, whereas all other genes contributed only variants of uncertain significance. Among 24 parents screened, variant status and phenotype largely agreed, and 3 cases positively correlated for cardiac channelopathies. Genotype-phenotype correlations significantly aided variant adjudication. Conclusions Genetic yield is higher in SUDC than in SIDS although, in both, it is contributed only by definitive-evidence genes. SIDS/SUDC cascade family screening facilitates establishment or dismissal of a diagnosis through definitive variant adjudication indicating that anonymity is no longer justifiable. Channelopathies may underlie a relevant fraction of SUDC. Binary classifications of genetic causality (pathogenic versus benign) could not always be adequate.


Assuntos
Canalopatias , Morte Súbita do Lactente , Pré-Escolar , Humanos , Autopsia , Coração , Exame Físico , Morte Súbita do Lactente/genética
11.
Curr Neuropharmacol ; 21(11): 2362-2373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37489793

RESUMO

BACKGROUND: Epigenetics of Autism Spectrum Disorders (ASD) is still an understudied field. The majority of the studies on the topic used an approach based on mere classification of cases and controls. OBJECTIVE: The present study aimed at providing a multi-level approach in which different types of epigenetic analysis (epigenetic drift, age acceleration) are combined. METHODS: We used publicly available datasets from blood (n = 3) and brain tissues (n = 3), separately. Firstly, we evaluated for each dataset and meta-analyzed the differential methylation profile between cases and controls. Secondly, we analyzed age acceleration, epigenetic drift and rare epigenetic variations. RESULTS: We observed a significant epi-signature of ASD in blood but not in brain specimens. We did not observe significant age acceleration in ASD, while epigenetic drift was significantly higher compared to controls. We reported the presence of significant rare epigenetic variations in 41 genes, 35 of which were never associated with ASD. Almost all genes were involved in pathways linked to ASD etiopathogenesis (i.e., neuronal development, mitochondrial metabolism, lipid biosynthesis and antigen presentation). CONCLUSION: Our data support the hypothesis of the use of blood epi-signature as a potential tool for diagnosis and prognosis of ASD. The presence of an enhanced epigenetic drift, especially in brain, which is linked to cellular replication, may suggest that alteration in epigenetics may occur at a very early developmental stage (i.e., fetal) when neuronal replication is still high.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/genética , Metilação de DNA , Epigênese Genética , Encéfalo/metabolismo , Neurônios/metabolismo
12.
Diagnostics (Basel) ; 13(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37443678

RESUMO

Marfan syndrome (MFS) is a rare inherited autosomic disorder, which encompasses a variety of systemic manifestations caused by mutations in the Fibrillin-1 encoding gene (FBN1). Cardinal clinical phenotypes of MFS are highly variable in terms of severity, and commonly involve cardiovascular, ocular, and musculoskeletal systems with a wide range of manifestations, such as ascending aorta aneurysms and dissection, mitral valve prolapse, ectopia lentis and long bone overgrowth, respectively. Of note, an accurate and prompt diagnosis is pivotal in order to provide the best treatment to the patients as early as possible. To date, the diagnosis of the syndrome has relied upon a systemic score calculation as well as DNA mutation identification. The aim of this review is to summarize the latest MFS evidence regarding the definition, differences and similarities with other connective tissue pathologies with severe systemic phenotypes (e.g., Autosomal dominant Weill-Marchesani syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome) and clinical assessment. In this regard, the management of MFS requires a multidisciplinary team in order to accurately control the evolution of the most severe and potentially life-threatening complications. Based on recent findings in the literature and our clinical experience, we propose a multidisciplinary approach involving specialists in different clinical fields (i.e., cardiologists, surgeons, ophthalmologists, orthopedics, pneumologists, neurologists, endocrinologists, geneticists, and psychologists) to comprehensively characterize, treat, and manage MFS patients with a personalized medicine approach.

13.
J Clin Med ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297898

RESUMO

COVID-19 may induce short- and long-term cognitive failures after recovery, but the underlying risk factors are still controversial. Here, we investigated whether (i) the odds of experiencing persistent cognitive failures differ based on the patients' disease course severity and sex at birth; and (ii) the patients' electrolytic profile in the acute stage represents a risk factor for persistent cognitive failures. We analysed data from 204 patients suffering from COVID-19 and hospitalised during the first pandemic wave. According to the 7-point WHO-OS scale, their disease course was classified as severe or mild. We investigated the presence of persistent cognitive failures collected after hospital discharge, while electrolyte profiles were collected during hospitalisation. The results showed that females who suffered from a mild course compared to a severe course of COVID-19 had a higher risk of presenting with persistent mental fatigue after recovery. Furthermore, in females who suffered from a mild course of COVID-19, persistent mental fatigue was related to electrolyte imbalance, in terms of both hypo- and hypernatremia, during hospitalisation in the acute phase. These findings have important implications for the clinical management of hospitalised COVID-19 patients. Attention should be paid to potential electrolyte imbalances, mainly in females suffering from mild COVID-19.

14.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373066

RESUMO

The majority of patients with Follicular Lymphoma (FL) experience subsequent phases of remission and relapse, making the disease "virtually" incurable. To predict the outcome of FL patients at diagnosis, various clinical-based prognostic scores have been proposed; nonetheless, they continue to fail for a subset of patients. Gene expression profiling has highlighted the pivotal role of the tumor microenvironment (TME) in the FL prognosis; nevertheless, there is still a need to standardize the assessment of immune-infiltrating cells for the prognostic classification of patients with early or late progressing disease. We studied a retrospective cohort of 49 FL lymph node biopsies at the time of the initial diagnosis using pathologist-guided analysis on whole slide images, and we characterized the immune repertoire for both quantity and distribution (intrafollicular, IF and extrafollicular, EF) of cell subsets in relation to clinical outcome. We looked for the natural killer (CD56), T lymphocyte (CD8, CD4, PD1) and macrophage (CD68, CD163, MA4A4A)-associated markers. High CD163/CD8 EF ratios and high CD56/MS4A4A EF ratios, according to Kaplan-Meier estimates were linked with shorter EFS (event-free survival), with the former being the only one associated with POD24. In contrast to IF CD68+ cells, which represent a more homogeneous population, higher in non-progressing patients, EF CD68+ macrophages did not stratify according to survival. We also identify distinctive MS4A4A+CD163-macrophage populations with different prognostic weights. Enlarging the macrophage characterization and combining it with a lymphoid marker in the rituximab era, in our opinion, may enable prognostic stratification for low-/high-grade FL patients beyond POD24. These findings warrant validation across larger FL cohorts.


Assuntos
Linfoma Folicular , Humanos , Intervalo Livre de Progressão , Linfoma Folicular/genética , Linfoma Folicular/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia , Rituximab , Microambiente Tumoral
15.
Front Endocrinol (Lausanne) ; 14: 1127312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008944

RESUMO

Introduction: FOXE1 is required for thyroid function and its homozygous mutations cause a rare syndromic form of congenital hypothyroidism (CH). FOXE1 has a polymorphic polyalanine tract whose involvement in thyroid pathology is controversial. Starting from genetic studies in a CH family, we explored the functional role and involvement of FOXE1 variations in a large CH population. Methods: We applied NGS screening to a large CH family and a cohort of 1752 individuals and validated these results by in silico modeling and in vitro experiments. Results: A new heterozygous FOXE1 variant segregated with 14-Alanine tract homozygosity in 5 CH siblings with athyreosis. The p.L107V variant demonstrated to significantly reduce the FOXE1 transcriptional activity. The 14-Alanine-FOXE1 displayed altered subcellular localization and significantly impaired synergy with other transcription factors, when compared with the more common 16-Alanine-FOXE1. The CH group with thyroid dysgenesis was largely and significantly enriched with the 14-Alanine-FOXE1 homozygosity. Discussion: We provide new evidence that disentangle the pathophysiological role of FOXE1 polyalanine tract, thereby significantly broadening the perspective on the role of FOXE1 in the complex pathogenesis of CH. FOXE1 should be therefore added to the group of polyalanine disease-associated transcription factors.


Assuntos
Hipotireoidismo Congênito , Humanos , Hipotireoidismo Congênito/genética , Peptídeos/genética , Fatores de Transcrição/genética , Fatores de Transcrição Forkhead/genética
16.
NPJ Parkinsons Dis ; 9(1): 48, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997543

RESUMO

Isolated REM Sleep Behavior Disorder (iRBD) is the strongest prodromal marker for α-synucleinopathies. Overt α-synucleinopathies and aging share several mechanisms, but this relationship has been poorly investigated in prodromal phases. Using DNA methylation-based epigenetic clocks, we measured biological aging in videopolysomnography confirmed iRBD patients, videopolysomnography-negative and population-based controls. We found that iRBDs tended to be epigenetically older than controls, suggesting that accelerated aging characterizes prodromal neurodegeneration.

17.
Cells ; 12(6)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980268

RESUMO

The aim of the present study was to provide a comprehensive characterization of whole genome DNA methylation patterns in replicative and ionizing irradiation- or doxorubicin-induced premature senescence, exhaustively exploring epigenetic modifications in three different human cell types: in somatic diploid skin fibroblasts and in bone marrow- and adipose-derived mesenchymal stem cells. With CpG-wise differential analysis, three epigenetic signatures were identified: (a) cell type- and treatment-specific signature; (b) cell type-specific senescence-related signature; and (c) cell type-transversal replicative senescence-related signature. Cluster analysis revealed that only replicative senescent cells created a distinct group reflecting notable alterations in the DNA methylation patterns accompanying this cellular state. Replicative senescence-associated epigenetic changes seemed to be of such an extent that they surpassed interpersonal dissimilarities. Enrichment in pathways linked to the nervous system and involved in the neurological functions was shown after pathway analysis of genes involved in the cell type-transversal replicative senescence-related signature. Although DNA methylation clock analysis provided no statistically significant evidence on epigenetic age acceleration related to senescence, a persistent trend of increased biological age in replicative senescent cultures of all three cell types was observed. Overall, this work indicates the heterogeneity of senescent cells depending on the tissue of origin and the type of senescence inducer that could be putatively translated to a distinct impact on tissue homeostasis.


Assuntos
Senescência Celular , Metilação de DNA , Humanos , Células Cultivadas , Senescência Celular/genética , Metilação de DNA/genética , Epigênese Genética , Fibroblastos/metabolismo
18.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835439

RESUMO

Two adult siblings born to first-cousin parents presented a clinical phenotype reminiscent of Rothmund-Thomson syndrome (RTS), implying fragile hair, absent eyelashes/eyebrows, bilateral cataracts, mottled pigmentation, dental decay, hypogonadism, and osteoporosis. As the clinical suspicion was not supported by the sequencing of RECQL4, the RTS2-causative gene, whole exome sequencing was applied and disclosed the homozygous variants c.83G>A (p.Gly28Asp) and c.2624A>C (p.Glu875Ala) in the nucleoporin 98 (NUP98) gene. Though both variants affect highly conserved amino acids, the c.83G>A looked more intriguing due to its higher pathogenicity score and location of the replaced amino acid between phenylalanine-glycine (FG) repeats within the first NUP98 intrinsically disordered region. Molecular modeling studies of the mutated NUP98 FG domain evidenced a dispersion of the intramolecular cohesion elements and a more elongated conformational state compared to the wild type. This different dynamic behavior may affect the NUP98 functions as the minor plasticity of the mutated FG domain undermines its role as a multi-docking station for RNA and proteins, and the impaired folding can lead to the weakening or the loss of specific interactions. The clinical overlap of NUP98-mutated and RTS2/RTS1 patients, accounted by converging dysregulated gene networks, supports this first-described constitutional NUP98 disorder, expanding the well-known role of NUP98 in cancer.


Assuntos
Mutação em Linhagem Germinativa , Complexo de Proteínas Formadoras de Poros Nucleares , Síndrome de Rothmund-Thomson , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Síndrome de Rothmund-Thomson/genética , Irmãos , Masculino , Feminino , Conformação Proteica
19.
Eur J Med Res ; 28(1): 81, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800980

RESUMO

BACKGROUND: COVID-19 has a wide spectrum of clinical manifestations and given its impact on morbidity and mortality, there is an unmet medical need to discover endogenous cellular and molecular biomarkers that predict the expected clinical course of the disease. Recently, epigenetics and especially DNA methylation have been pointed out as a promising tool for outcome prediction in several diseases. METHODS AND RESULTS: Using the Illumina Infinium Methylation EPIC BeadChip850K, we investigated genome-wide differences in DNA methylation in an Italian Cohort of patients with comorbidities and compared severe (n = 64) and mild (123) prognosis. Results showed that the epigenetic signature, already present at the time of Hospital admission, can significantly predict risk of severe outcomes. Further analyses provided evidence of an association between age acceleration and a severe prognosis after COVID-19 infection. The burden of Stochastic Epigenetic Mutation (SEMs) has been significantly increased in patients with poor prognosis. Results have been replicated in silico considering COVID-19 negative subjects and available previously published datasets. CONCLUSIONS: Using original methylation data and taking advantage of already published datasets, we confirmed in the blood that epigenetics is actively involved in immune response after COVID-19 infection, allowing the identification of a specific signature able to discriminate the disease evolution. Furthermore, the study showed that epigenetic drift and age acceleration are associated with severe prognosis. All these findings prove that host epigenetics undergoes notable and specific rearrangements to respond to COVID-19 infection which can be used for a personalized, timely, and targeted management of COVID-19 patients during the first stages of hospitalization.


Assuntos
COVID-19 , Epigenoma , Humanos , Estudo de Associação Genômica Ampla/métodos , COVID-19/genética , Epigênese Genética , Metilação de DNA/genética
20.
Front Aging Neurosci ; 15: 1067954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819716

RESUMO

Background: The UNC13A gene is an established susceptibility locus for amyotrophic lateral sclerosis (ALS) and a determinant of shorter survival after disease onset, with up to 33.0 months difference in life expectancy for carriers of the rs12608932 risk genotype. However, its overall effect on other clinical features and ALS phenotypic variability is controversial. Methods: Genotype data of the UNC13A rs12608932 SNP (A-major allele; C-minor allele) was obtained from a cohort of 972 ALS patients. Demographic and clinical variables were collected, including cognitive and behavioral profiles, evaluated through the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) - Italian version and the Frontal Behavioral Inventory (FBI); upper and lower motor neuron involvement, assessed by the Penn Upper Motor Neuron Score (PUMNS) and the Lower Motor Neuron Score (LMNS)/Medical Research Council (MRC) scores, respectively; the ALS Functional Rating Scale Revised (ALSFRS-R) score at evaluation and progression rate; age and site of onset; survival. The comparison between the three rs12608932 genotypes (AA, AC, and CC) was performed using the additive, dominant, and recessive genetic models. Results: The rs12608932 minor allele frequency was 0.31 in our ALS cohort, in comparison to 0.33-0.41 reported in other Caucasian ALS populations. Carriers of at least one minor C allele (AC + CC genotypes) had a shorter median survival than patients with the wild-type AA genotype (-11.7 months, p = 0.013), even after adjusting for age and site of onset, C9orf72 mutational status and gender. Patients harboring at least one major A allele (AA + AC genotypes) and particularly those with the wild-type AA genotype showed a significantly higher PUMNS compared to CC carriers (p = 0.015 and padj = 0.037, respectively), thus indicating a more severe upper motor neuron involvement. Our analysis did not detect significant associations with all the other clinical parameters considered. Conclusion: Overall, our findings confirm the role of UNC13A as a determinant of survival in ALS patients and show the association of this locus also with upper motor neuron involvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...