Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Curr Opin Plant Biol ; 81: 102577, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38889616

RESUMO

The ability of certain insects to feed on plants containing toxic specialized metabolites may be attributed to detoxification enzymes. Representatives of a few large families of detoxification enzymes are widespread in insect herbivores acting to functionalize toxins and conjugate them with polar substituents to decrease toxicity, increase water solubility and enhance excretion. Insects have also developed specific enzymes for coping with toxins that are activated upon plant damage. Another source of detoxification potential in insects lies in their microbiomes, which are being increasingly recognized for their role in processing plant toxins. The evolution of insect detoxification systems to resist toxic specialized metabolites in plants may in turn have selected for the great diversity of such metabolites found in nature.

2.
Cell ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38897195

RESUMO

The representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages. Our findings reveal a functionally ring-shaped organization of the antennal lobe composed of specific glomerular clusters. This configuration establishes an odor-specific chemotopic representation by encoding different chemical classes and ecologically distinct odors in the form of glomerular rings. The ring-shaped glomerular arrangement, which we confirm by selective targeting of OR70a-expressing sensory neurons, occurs throughout development, and the odor-coding pattern within the glomerular population is consistent across developmental stages. Mechanistically, this unconventional spatial olfactory code reflects the locust-specific and multiplexed glomerular innervation pattern of the antennal lobe.

3.
Org Lett ; 26(26): 5522-5527, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38900928

RESUMO

Here, we use transcriptomic data from seeds of Musella lasiocarpa to identify five enzymes involved in the formation of dihydrocurcuminoids. Characterization of the substrate specificities of the enzymes reveals two distinct dihydrocurcuminoid pathways leading to phenylphenalenones and linear diarylheptanoid derivatives, the major seed metabolites. Furthermore, we demonstrate the stepwise conversion of dihydrobisdemethoxycurcumin to the phenylphenalenone 4'-hydroxylachnanthocarpone by feeding intermediates to M. lasiocarpa root protein extract.


Assuntos
Diarileptanoides , Fenalenos , Diarileptanoides/química , Fenalenos/química , Estrutura Molecular , Sementes/química , Musa/química , Especificidade por Substrato , População do Leste Asiático
4.
PLoS One ; 19(5): e0302714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805412

RESUMO

With the increasing frequencies of extreme weather events caused by climate change, the risk of forest damage from insect attacks grows. Storms and droughts can damage and weaken trees, reduce tree vigour and defence capacity and thus provide host trees that can be successfully attacked by damaging insects, as often observed in Norway spruce stands attacked by the Eurasian spruce bark beetle Ips typographus. Following storms, partially uprooted trees with grounded crowns suffer reduced water uptake and carbon assimilation, which may lower their vigour and decrease their ability to defend against insect attack. We conducted in situ measurements on windthrown and standing control trees to determine the concentrations of non-structural carbohydrates (NSCs), of phenolic defences and volatile monoterpene emissions. These are the main storage and defence compounds responsible for beetle´s pioneer success and host tree selection. Our results show that while sugar and phenolic concentrations of standing trees remained rather constant over a 4-month period, windthrown trees experienced a decrease of 78% and 37% of sugar and phenolic concentrations, respectively. This strong decline was especially pronounced for fructose (-83%) and glucose (-85%) and for taxifolin (-50.1%). Windthrown trees emitted 25 times greater monoterpene concentrations than standing trees, in particular alpha-pinene (23 times greater), beta-pinene (27 times greater) and 3-carene (90 times greater). We conclude that windthrown trees exhibited reduced resources of anti-herbivore and anti-pathogen defence compounds needed for the response to herbivore attack. The enhanced emission rates of volatile terpenes from windthrown trees may provide olfactory cues during bark beetle early swarming related to altered tree defences. Our results contribute to the knowledge of fallen trees vigour and their defence capacity during the first months after the wind-throw disturbance. Yet, the influence of different emission rates and profiles on bark beetle behaviour and host selection requires further investigation.


Assuntos
Monoterpenos , Fenóis , Picea , Picea/parasitologia , Picea/metabolismo , Monoterpenos/análise , Monoterpenos/metabolismo , Fenóis/análise , Fenóis/metabolismo , Animais , Carboidratos/análise , Besouros/fisiologia , Noruega , Mudança Climática , Vento
5.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673766

RESUMO

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.


Assuntos
Eritritol , Eritritol/análogos & derivados , Populus , Fosfatos Açúcares , Transferases , Populus/genética , Populus/metabolismo , Populus/enzimologia , Eritritol/metabolismo , Fosfatos Açúcares/metabolismo , Transferases/metabolismo , Transferases/genética , Hemiterpenos/metabolismo , Butadienos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Pentanos/metabolismo , Plantas Geneticamente Modificadas
6.
New Phytol ; 242(3): 1000-1017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433329

RESUMO

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Secas , Picea/microbiologia , Casca de Planta/química , Doenças das Plantas/microbiologia , Terpenos , Fenóis , Noruega , Água/análise , Carboidratos/análise
7.
Front Microbiol ; 15: 1367127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435688

RESUMO

The Eurasian spruce bark beetle (Ips typographus) is currently the most economically relevant pest of Norway spruce (Picea abies). Ips typographus associates with filamentous fungi that may help it overcome the tree's chemical defenses. However, the involvement of other microbial partners in this pest's ecological success is unclear. To understand the dynamics of the bark beetle-associated microbiota, we characterized the bacterial and fungal communities of wild-collected and lab-reared beetles throughout their development by culture-dependent approaches, meta-barcoding, and quantitative PCR. Gammaproteobacteria dominated the bacterial communities, while the fungal communities were mainly composed of yeasts of the Saccharomycetales order. A stable core of microbes is shared by all life stages, and is distinct from those associated with the surrounding bark, indicating that Ips typographus influences the microbial communities of its environment and offspring. These findings coupled with our observations of maternal behavior, suggest that Ips typographus transfers part of its microbiota to eggs via deposition of an egg plug treated with maternal secretions, and by inducing an increase in abundance of a subset of taxa from the adjacent bark.

8.
Mol Plant Pathol ; 25(1): e13424, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279847

RESUMO

The phenylalanine ammonia-lyase (PAL) enzyme catalyses the conversion of l-phenylalanine to trans-cinnamic acid. This conversion is the first step in phenylpropanoid biosynthesis in plants. The phenylpropanoid pathway produces diverse plant metabolites that play essential roles in various processes, including structural support and defence. Previous studies have shown that mutation of the PAL genes enhances disease susceptibility. Here, we investigated the functions of the rice PAL genes using 2-aminoindan-2-phosphonic acid (AIP), a strong competitive inhibitor of PAL enzymes. We show that the application of AIP can significantly reduce the PAL activity of rice crude protein extracts in vitro. However, when AIP was applied to intact rice plants, it reduced infection of the root-knot nematode Meloidogyne graminicola. RNA-seq showed that AIP treatment resulted in a rapid but transient upregulation of defence-related genes in roots. Moreover, targeted metabolomics demonstrated higher levels of jasmonates and antimicrobial flavonoids and diterpenoids accumulating after AIP treatment. Furthermore, chemical inhibition of the jasmonate pathway abolished the effect of AIP on nematode infection. Our results show that disturbance of the phenylpropanoid pathway by the PAL inhibitor AIP induces defence in rice against M. graminicola by activating jasmonate-mediated defence.


Assuntos
Oryza , Oxilipinas , Tylenchoidea , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Oryza/genética , Oryza/metabolismo , Tylenchoidea/fisiologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo
9.
New Phytol ; 241(2): 827-844, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37974472

RESUMO

Strigolactones (SLs) are carotenoid-derived phytohormones that regulate plant growth and development. While root-secreted SLs are well-known to facilitate plant symbiosis with beneficial microbes, the role of SLs in plant interactions with pathogenic microbes remains largely unexplored. Using genetic and biochemical approaches, we demonstrate a negative role of SLs in rice (Oryza sativa) defense against the blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae). We found that SL biosynthesis and perception mutants, and wild-type (WT) plants after chemical inhibition of SLs, were less susceptible to P. oryzae. Strigolactone deficiency also resulted in a higher accumulation of jasmonates, soluble sugars and flavonoid phytoalexins in rice leaves. Likewise, in response to P. oryzae infection, SL signaling was downregulated, while jasmonate and sugar content increased markedly. The jar1 mutant unable to synthesize jasmonoyl-l-isoleucine, and the coi1-18 RNAi line perturbed in jasmonate signaling, both accumulated lower levels of sugars. However, when WT seedlings were sprayed with glucose or sucrose, jasmonate accumulation increased, suggesting a reciprocal positive interplay between jasmonates and sugars. Finally, we showed that functional jasmonate signaling is necessary for SL deficiency to induce rice defense against P. oryzae. We conclude that a reduction in rice SL content reduces P. oryzae susceptibility by activating jasmonate and sugar signaling pathways, and flavonoid phytoalexin accumulation.


Assuntos
Magnaporthe , Oryza , Açúcares/metabolismo , Oryza/metabolismo , Flavonoides/metabolismo , Fitoalexinas , Magnaporthe/fisiologia , Doenças das Plantas/microbiologia
11.
Ecol Evol ; 13(12): e10763, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058520

RESUMO

Brassicaceae plants have the glucosinolate-myrosinase defense system, jointly active against herbivory. However, constitutive glucosinolate (GLS) defense is observed to occur at levels that do not deter all insects from feeding. That prompts the question of why Brassicaceae plants have not evolved a higher constitutive defense. The answer may lie in the contrasting relationship between plant defense and host plant preference of specialist and generalist herbivores. GLS content increases a plant's susceptibility to specialist insects. In contrast, generalists are deterred by the plant GLSs. Although GLSs can attract the natural enemies (predators and parasitoids) of these herbivores, enemies can reduce herbivore pressure to some extent only. So, plants can be overrun by specialists if GLS content is too high, whereas generalists can invade the plants if it is too low. Therefore, an optimal constitutive plant defense can minimize the overall herbivore pressure. To explain the optimal defense theoretically, we model the contrasting host selection behavior of insect herbivores and the emergence of their natural enemies by non-autonomous ordinary differential equations, where the independent variable is the plant GLS concentration. From the model, we quantify the optimal amount of GLSs, which minimizes total herbivore (specialists and generalists) pressure. That quite successfully explains the evolution of constitutive defense in plants from the perspective of optimality theory.

12.
Physiol Plant ; 175(6): e14078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148231

RESUMO

Aromatic aldehydes and amines are common plant metabolites involved in several specialized metabolite biosynthesis pathways. Recently, we showed that the aromatic aldehyde synthase PtAAS1 and the aromatic amino acid decarboxylase PtAADC1 contribute to the herbivory-induced formation of volatile 2-phenylethanol and its glucoside 2-phenylethyl-ß-D-glucopyranoside in Populus trichocarpa. To unravel alternative metabolic fates of phenylacetaldehyde and 2-phenylethylamine beyond alcohol and alcohol glucoside formation, we heterologously expressed PtAAS1 and PtAADC1 in Nicotiana benthamiana and analyzed plant extracts using untargeted LC-qTOF-MS and targeted LC-MS/MS analysis. While the metabolomes of PtAADC1-expressing plants did not significantly differ from those of control plants, expression of PtAAS1 resulted in the accumulation of phenylacetic acid (PAA) and PAA-amino acid conjugates, identified as PAA-aspartate and PAA-glutamate. Herbivory-damaged poplar leaves revealed significantly induced accumulation of PAA-Asp, while levels of PAA remained unaltered upon herbivory. Transcriptome analysis showed that members of auxin-amido synthetase GH3 genes involved in the conjugation of auxins with amino acids were significantly upregulated upon herbivory in P. trichocarpa leaves. Overall, our data indicates that phenylacetaldehyde generated by poplar PtAAS1 serves as a hub metabolite linking the biosynthesis of volatile, non-volatile herbivory-induced specialized metabolites, and phytohormones, suggesting that plant growth and defense can be balanced on a metabolic level.


Assuntos
Herbivoria , Espectrometria de Massas em Tandem , Cromatografia Líquida , Ácidos Indolacéticos/metabolismo , Aminoácidos/metabolismo , Glucosídeos , Regulação da Expressão Gênica de Plantas
13.
Acta Pharm Sin B ; 13(11): 4638-4654, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969733

RESUMO

Sugar-sugar glycosyltransferases play important roles in constructing complex and bioactive saponins. Here, we characterized a series of UDP-glycosyltransferases responsible for biosynthesizing the branched sugar chain of bioactive steroidal saponins from a widely known medicinal plant Paris polyphylla var. yunnanensis. Among them, a 2'-O-rhamnosyltransferase and three 6'-O-glucosyltrasferases catalyzed a cascade of glycosylation to produce steroidal diglycosides and triglycosides, respectively. These UDP-glycosyltransferases showed astonishing substrate promiscuity, resulting in the generation of a panel of 24 terpenoid glycosides including 15 previously undescribed compounds. A mutant library containing 44 variants was constructed based on the identification of critical residues by molecular docking simulations and protein model alignments, and a mutant UGT91AH1Y187A with increased catalytic efficiency was obtained. The steroidal saponins exhibited remarkable antifungal activity against four widespread strains of human pathogenic fungi attributed to ergosterol-dependent damage of fungal cell membranes, and 2'-O-rhamnosylation appeared to correlate with strong antifungal effects. The findings elucidated the biosynthetic machinery for their production of steroidal saponins and revealed their potential as new antifungal agents.

14.
Nat Prod Rep ; 40(12): 1901-1937, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37661854

RESUMO

Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.


Assuntos
Polinização , Compostos Orgânicos Voláteis , Polinização/fisiologia , Flores/química , Flores/metabolismo , Odorantes , Evolução Biológica , Biologia , Compostos Orgânicos Voláteis/química
15.
Plant Physiol ; 194(1): 329-346, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584327

RESUMO

Aldoximes are well-known metabolic precursors for plant defense compounds such as cyanogenic glycosides, glucosinolates, and volatile nitriles. They are also defenses themselves produced in response to herbivory; however, it is unclear whether aldoximes can be stored over a longer term as defense compounds and how plants protect themselves against the potential autotoxic effects of aldoximes. Here, we show that the Neotropical myrmecophyte tococa (Tococa quadrialata, recently renamed Miconia microphysca) accumulates phenylacetaldoxime glucoside (PAOx-Glc) in response to leaf herbivory. Sequence comparison, transcriptomic analysis, and heterologous expression revealed that 2 cytochrome P450 enzymes, CYP79A206 and CYP79A207, and the UDP-glucosyltransferase UGT85A123 are involved in the formation of PAOx-Glc in tococa. Another P450, CYP71E76, was shown to convert PAOx to the volatile defense compound benzyl cyanide. The formation of PAOx-Glc and PAOx in leaves is a very local response to herbivory but does not appear to be regulated by jasmonic acid signaling. In contrast to PAOx, which was only detectable during herbivory, PAOx-Glc levels remained high for at least 3 d after insect feeding. This, together with the fact that gut protein extracts of 3 insect herbivore species exhibited hydrolytic activity toward PAOx-Glc, suggests that the glucoside is a stable storage form of a defense compound that may provide rapid protection against future herbivory. Moreover, the finding that herbivory or pathogen elicitor treatment also led to the accumulation of PAOx-Glc in 3 other phylogenetically distant plant species suggests that the formation and storage of aldoxime glucosides may represent a widespread plant defense response.


Assuntos
Glucosídeos , Herbivoria , Glucosídeos/metabolismo , Nitrilas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oximas/metabolismo , Folhas de Planta/metabolismo
16.
ISME J ; 17(10): 1741-1750, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37550382

RESUMO

Sex pheromones are widely used by insects as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Although researchers have obtained extensive knowledge about sex pheromones, little is known about the differentiation mechanism of sex pheromones in closely related species. Using Bactrocera dorsalis and Bactrocera cucurbitae as the study model, we investigated how the male-borne sex pheromones are different. The results demonstrated that both 2,3,5-trimethylpyrazine (TMP) and 2,3,5,6-tetramethylpyrazine (TTMP) were sex pheromones produced by rectal Bacillus in the two flies. However, the TMP/TTMP ratios were reversed, indicating sex pheromone specificity in the two flies. Bacterial fermentation results showed that different threonine and glycine levels were responsible for the preference of rectal Bacillus to produce TMP or TTMP. Accordingly, threonine (glycine) levels and the expression of the threonine and glycine coding genes were significantly different between B. dorsalis and B. cucurbitae. In vivo assays confirmed that increased rectal glycine and threonine levels by amino acid feeding could significantly decrease the TMP/TTMP ratios and result in significantly decreased mating abilities in the studied flies. Meanwhile, decreased rectal glycine and threonine levels due to RNAi of the glycine and threonine coding genes was found to significantly increase the TMP/TTMP ratios and result in significantly decreased mating abilities. The study contributes to the new insight that insects and their symbionts can jointly regulate sex pheromone specificity in insects, and in turn, this helps us to better understand how the evolution of chemical communication affects speciation.


Assuntos
Bacillus , Atrativos Sexuais , Tephritidae , Masculino , Animais , Atrativos Sexuais/metabolismo , Aminoácidos/metabolismo , Tephritidae/genética , Tephritidae/metabolismo , Glicina/metabolismo , Treonina/metabolismo , Bactérias
17.
Plant Cell ; 35(10): 3828-3844, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37392473

RESUMO

Plant defense against herbivores is costly and often associated with growth repression. The phytohormone jasmonate (JA) plays a central role in prioritizing defense over growth during herbivore attack, but the underlying mechanisms remain unclear. When brown planthoppers (BPH, Nilaparvata lugens) attack rice (Oryza sativa), growth is dramatically suppressed. BPH infestation also increases inactive gibberellin (GA) levels and transcripts of GA 2-oxidase (GA2ox) genes, 2 (GA2ox3 and GA2ox7) of which encode enzymes that catalyze the conversion of bioactive GAs to inactive GAs in vitro and in vivo. Mutation of these GA2oxs diminishes BPH-elicited growth restriction without affecting BPH resistance. Phytohormone profiling and transcriptome analyses revealed that GA2ox-mediated GA catabolism was enhanced by JA signaling. The transcript levels of GA2ox3 and GA2ox7 were significantly attenuated under BPH attack in JA biosynthesis (allene oxide cyclase [aoc]) or signaling-deficient (myc2) mutants. In contrast, GA2ox3 and GA2ox7 expression was increased in MYC2 overexpression lines. MYC2 directly binds to the G-boxes in the promoters of both GA2ox genes to regulate their expression. We conclude that JA signaling simultaneously activates defense responses and GA catabolism to rapidly optimize resource allocation in attacked plants and provides a mechanism for phytohormone crosstalk.

18.
ISME J ; 17(10): 1693-1704, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37479887

RESUMO

Beauveria bassiana is a soil fungus that parasitizes a large number of arthropod species, including numerous crop pests, causing white muscardine disease and is therefore used as a biological insecticide. However, some insects, such as the cabbage aphid (Brevicoryne brassicae), defend themselves chemically by sequestering dietary pro-toxins (glucosinolates) from their Brassicales host plants. Glucosinolates are accumulated by cabbage aphids and activated to form toxic isothiocyanates when under attack. While isothiocyanate formation protects aphids against most attackers, B. bassiana is still able to infect the cabbage aphid under natural conditions. We therefore investigated how this fungus is able to circumvent the chemical defense system of the cabbage aphid. Here, we describe how B. bassiana infection activates the cabbage aphid defense system, but the resulting toxins are metabolized by B. bassiana via the mercapturic acid pathway, of which the first step is catalyzed by glutathione-S-transferases of low substrate specificity. This detoxification pathway enhances B. bassiana growth when isothiocyanates are present in natural concentrations, and so appears to be an important factor in fungal parasitization of these chemically defended aphids.


Assuntos
Afídeos , Beauveria , Inseticidas , Animais , Glucosinolatos , Insetos , Isotiocianatos
19.
J Nat Prod ; 86(6): 1571-1583, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37256742

RESUMO

Phenylphenalenones (PPs) are phytoalexins protecting banana plants (Musaceae) against various pathogens. However, how plants synthesize PPs is still poorly understood. In this work, we investigated the major secondary metabolites of developing seed coats of Musella lasiocarpa to determine if this species might be a good model system to study the biosynthesis of PPs. We found that PPs are major components of M. lasiocarpa seed coats at middle and late developmental stages. Two previously undescribed PP dimers (M-4 and M-6) and a group of unreported diarylheptanoid (DH) derivatives named musellins A-F (B-7, B-9, B-10, B-12, B-14, and B-15) were isolated along with 14 known compounds. Musellin D (B-12) and musellin F (B-15) contain the first reported furo[3,2-c]pyran ring and represent a previously undescribed carbon skeleton. The chemical structures of all new compounds were characterized by spectroscopic data, including NMR, HRESIMS, and ECD analysis. Plausible biosynthetic pathways for the formation of PPs and DHs are proposed.


Assuntos
Musa , Musaceae , Fenalenos , Diarileptanoides , Estrutura Molecular , Musa/metabolismo , Fenalenos/química , Polímeros , Sementes
20.
Plants (Basel) ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176952

RESUMO

Although phloem-feeding insects such as aphids can cause significant damage to plants, relatively little is known about early plant defenses against these insects. As a first line of defense, legumes can stop the phloem mass flow through a conformational change in phloem proteins known as forisomes in response to Ca2+ influx. However, specialized phloem-feeding insects might be able to suppress the conformational change of forisomes and thereby prevent sieve element occlusion. To investigate this possibility, we triggered forisome dispersion through application of a local heat stimulus to the leaf tips of pea (Pisum sativum), clover (Trifolium pratense) and broad bean (Vicia faba) plants infested with different pea aphid (Acyrthosiphon pisum) host races and monitored forisome responses. Pea aphids were able to suppress forisome dispersion, but this depended on the infesting aphid host race, the plant species, and the age of the plant. Differences in the ability of aphids to suppress forisome dispersion may be explained by differences in the composition and quantity of the aphid saliva injected into the plant. Various mechanisms of how pea aphids might suppress forisome dispersion are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...