Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 39(5): e3353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155963

RESUMO

Opportunities for process intensification have made continuous biomanufacturing an area of active research. While tangential flow filtration (TFF) is typically employed within the biologics purification train to increase drug substance concentration, single-pass TFF (SPTFF) modifies its format by enabling continuity of this process and achieving a multifold concentration factor through a single-pass over the filtration membranes. In continuous processes feed concentration and flow rate are determined by the preceding unit operations. Therefore, tight control of SPTFF output concentration must be achieved through precise design of the membrane configuration, unlike TFF. However, predictive modeling can be utilized to identify configurations that achieve a desired target concentration across ranges of possible feed conditions with minimal experimental data, hence enabling accelerated process development and design flexibility. We hereby describe the development of a mechanistic model predicting SPTFF performance across a wide design space using the well-established stagnant film model, which we demonstrate is more accurate at higher feed flow rates. The flux excursion dataset was generated within time constraints and with minimal material consumption, showing the method's ability to be quickly adapted. While this approach eliminates characterizing complex physicochemical model variables or the need for users with specialized training, the model and its assumptions become inaccurate at low flow rates, below 25 L/m2 /h, and high conversions, above 0.9. As this low flow rate, high conversion operating regime is relevant for continuous biomanufacturing, we explore the assumptions and challenges involved in predicting and modeling SPTFF processes, while suggesting added characterization to gain further process insight.

2.
Nano Life ; 5(2): 1550001-1550014, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26539251

RESUMO

Anti-fibrotic and tissue regenerative mesenchymal stromal cell (MSC) properties are largely mediated by secreted cytokines and growth factors. MSCs are implanted to augment joint cartilage replacement and to treat diabetic ulcers and burn injuries simultaneously with local anesthetics, which reduce pain. However, the effect of anesthetics on therapeutic human MSC secretory function has not been evaluated. In order to assess the effect of local anesthetics on the MSC secretome, a panel of four anesthetics with different potencies - lidocaine, procaine, ropivacaine and bupivacaine - was evaluated. Since injured tissues secrete inflammatory cytokines, the effects of anesthetics on MSCs stimulated with tumor necrosis factor (TNF)-α and interferon (IFN)-γ were also measured. Dose dependent and anesthesia specific effects on cell viability, post exposure proliferation and secretory function were quantified using alamar blue reduction and immunoassays, respectively. Computational pathway analysis was performed to identify upstream regulators and molecular pathways likely associated with the effects of these chemicals on the MSC secretome. Our results indicated while neither lidocaine nor procaine greatly reduced unstimulated cell viability, ropivacaine and bupivacaine induced dose dependent viability decreases. This pattern was exaggerated in the simulated inflammatory environment. The reversibility of these effects after withdrawal of the anesthetics was attenuated for TNF-α/IFN-γ-stimulated MSCs exposed to ropivacaine and bupivacaine. In addition, secretome analysis indicated that constitutive secretion changes were clearly affected by both anesthetic alone and anesthetic plus TNFα/IFNγ cell stimulation, but the secretory pattern was drug specific and did not necessarily coincide with viability changes. Pathway analysis identified different intracellular regulators for stimulated and unstimulated MSCs. Within these groups, ropivacaine and bupivacaine appeared to act on MSCs similarly via the same regulatory mechanisms. Given the variable effect of local anesthetics on MSC viability and function, these studies underscore the need to evaluate MSC in the presence of medications, such as anesthetics, that are likely to accompany cell implantation.

3.
Lab Chip ; 15(15): 3211-21, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26130452

RESUMO

Immunoassays are widely utilized due to their ability to quantify a vast assortment of biomolecules relevant to biological research and clinical diagnostics. Recently, immunoassay capabilities have been improved by the development of multiplex assays that simultaneously measure multiple analytes in a single sample. However, these assays are hindered by high costs of reagents and relatively large sample requirements. For example, in vitro screening systems currently dedicate individual wells to each time point of interest and this limitation is amplified in screening studies when the investigation of many experimental conditions is necessary; resulting in large volumes for analysis, a correspondingly high cost and a limited temporal experimental design. Microfluidics based immunoassays have been developed in order to overcome these drawbacks. Together, previous studies have demonstrated on-chip assays with either a large dynamic range, high performance sensitivity, and/or the ability to process samples in parallel on a single chip. In this report, we develop a multiplex immunoassay possessing all of these parallel characteristics using commercially available reagents, which allows the analytes of interest to be easily changed. The device presented can measure 6 proteins in 32 samples simultaneously using only 4.2 µL of sample volume. High quality standard curves are generated for all 6 analytes included in the analysis, and spiked samples are quantified throughout the working range of the assay. In addition, we demonstrate a strong correlation (R(2) = 0.8999) between in vitro supernatant measurements using our device and those obtained from a bench-top multiplex immunoassay. Finally, we describe cytokine secretion in an in vitro inflammatory hippocampus culture system, establishing proof-of-concept of the ability to use this platform as an in vitro screening tool. The low-volume, multiplexing abilities of the microdevice described in this report could be broadly applied to numerous situations where sample volumes and costs are limiting.


Assuntos
Imunoensaio/métodos , Técnicas Analíticas Microfluídicas/métodos , Animais , Linhagem Celular , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Desenho de Equipamento , Hipocampo/química , Humanos , Imunoensaio/instrumentação , Células-Tronco Mesenquimais , Técnicas Analíticas Microfluídicas/instrumentação , Proteínas/análise , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
4.
Microfluid Nanofluidics ; 18(2): 199-214, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25691853

RESUMO

Immunoassays are one of the most versatile and widely performed biochemical assays and, given their selectivity and specificity, are used in both clinical and research settings. However, the high cost of reagents and relatively large sample volumes constrain the integration of immunoassays into many applications. Scaling the assay down within microfluidic devices can alleviate issues associated with reagent and sample consumption. However, in many cases a new device is designed and empirically optimized for each specific analyte, a costly and time consuming approach. In this paper, we report the development of a microfluidic bead-based immunoassay which, using antibody coated microbeads, can potentially detect any analyte or combination of analytes for which antibody coated microbeads can be generated. We also developed a computational reaction model and optimization algorithm that can be used to optimize the device for any analyte. We applied this technique to develop a low volume IL-6 immunoassay with high sensitivity (358 fM, 10 pg/mL) and a large dynamic range (4 orders of magnitude). This device design and optimization technique can be used to design assays for any protein with an available antibody and can be used with a large number of applications including biomarker discovery, temporal in vitro studies using a reduced number of cells and reagents, and analysis of scarce biological samples in animal studies and clinical research settings.

5.
Biochem Biophys Res Commun ; 458(1): 8-13, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25625213

RESUMO

During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. SB431542, an inhibitor of transforming growth factor-ß1 (TGF-ß1)-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-ß1 at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-ß1 is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia.


Assuntos
Actinas/metabolismo , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Alginatos , Diferenciação Celular , Hipóxia Celular/fisiologia , Células Cultivadas , Células Imobilizadas , Colágeno/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Células-Tronco Mesenquimais/citologia , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Pele/citologia , Pele/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...