Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Inflammopharmacology ; 30(1): 173-184, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35075553

RESUMO

In the current scenario, most countries are affected by COVID-19, a pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has a massive impact on human health. Previous studies showed that some traditionally used medicinal herbs and their combinations showed synergistic anti-viral and anti-inflammatory activity against SARS-CoV-2 type infections. Therefore, the goal of this study is to demonstrate the anti-viral and anti-inflammatory effects of a novel polyherbal formulation, hereinafter referred to as Imusil, on Vero E6 cell lines and Raw 264.7 murine macrophage cells respectively. The Imusil was subjected to identify its chemical characterisations such as UV-Visible spectrum profile, Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectroscopic (GC-MS) analysis. FT-IR analysis of Imusil peak values with various functional compounds such as alcohol, esters, aliphatic and carboxylic acids. GC-MS analysis of compounds with totally 87 compounds major chemical compounds were identified, such as 3-(Octanoyloxy) propane-1,2-diyl bis(decanoate), Succinic acid, 2-methylhex-3-yl 2,2,2-trifluoroethyl ester, Neophytadiene, 3,5,9-Trioxa-4-phosphaheneicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxododecyl)oxy]-, hydroxide, inner salt, 4-oxide, (R)-. The anti-viral activity of Imusil against SARS-CoV-2 was assessed using plaque reduction assay and anti-inflammatory study was conducted on lipopolysaccharide (LPS)-induced RAW 264.7 cells. The results obtained from the study reveal that Imusil significantly inhibited SARS-CoV-2 replication in Vero E6 cells and the production of inflammatory mediator's cyclooxygenase-2 and pro-inflammatory cytokines like tumour necrosis factor-α and interleukin- 6 were significantly reduced, along with thwarting the significant oxidative stress by preventing the expression of NOX-2 thereby inhibiting the reactive oxygen species formation. Hence, considering the current study as a novel strategy for mediating the COVID-19 associated aliments, inceptive scientific evidence of Imusil promises its potential therapeutic implications against COVID-19 and inflammatory conditions.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina , Animais , Anti-Inflamatórios/farmacologia , Humanos , Mediadores da Inflamação , Camundongos , Estresse Oxidativo , SARS-CoV-2 , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Carbohydr Polym ; 121: 302-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25659702

RESUMO

In this study, chitosan functionalized LaF3:Yb,Er upconverting nanotransducers (UCNTs) with controlled size and shape have been successfully synthesized by a facile one pot precipitation method. The chitosan encapsulated UCNTs show bright upconversion fluorescence upon excitation with 974 nm NIR region. The average crystallite size of UCNTs about 7.6 nm was achieved using chitosan mediated synthesis. The FTIR result confirms the chitosan coating over the LaF3:Yb,Er nanoparticles. Due to the surface modification using natural biopolymer chitosan, the as-prepared nanocrystals show excellent biocompatibility even at high dose at 200 µg/ml. To the best of our knowledge the presented work is the first report on in vitro analysis of chitosan conjugated LaF3:Yb,Er upconverting nanocrystals in human breast (MCF-7) cancer cells. These nanotransducers can be used as luminescent probes for bioimaging and deep tissue cancer therapeutic applications.


Assuntos
Quitosana/química , Érbio/química , Fluoretos/química , Lantânio/química , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Itérbio/química , Sobrevivência Celular/efeitos dos fármacos , Quitosana/farmacologia , Humanos , Células MCF-7
3.
Int J Biol Macromol ; 72: 1308-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453288

RESUMO

In this work, we described one pot hydrothermal synthesis of surface modified water soluble YF3: Yb, Er upconverting nanofluorophores (UCNFs) using natural biopolymer chitosan. The obtained nanocrystals have undergone X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) studies. The nanoparticles possess uniform particle size distribution with average size about 27 nm. The cytotoxicity results revealed that the chitosan capped nanoparticles exhibit excellent biocompatibility in human breast cancer cells. In conclusion, the water soluble chitosan capped YF3: Yb, Er nanoparticles could be used as a potential candidate in bio-imaging and therapeutic applications.


Assuntos
Quitosana/farmacologia , Érbio/farmacologia , Corantes Fluorescentes/síntese química , Nanopartículas/química , Itérbio/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Humanos , Medições Luminescentes , Células MCF-7 , Nanopartículas/ultraestrutura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...