Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Am J Pharm Educ ; : 100745, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944279

RESUMO

The 2023-2024 American Association of Colleges of Pharmacy (AACP) Research and Graduate Affairs Committee (RGAC or the Committee) was charged with developing programs focused on career and professional development for researchers, new faculty, and graduate students in colleges and schools of pharmacy. After reviewing exiting resources available to pharmacy faculty for grant writing, the Committee recognized a need for more comprehensive, diverse, and tailored resources for pharmacy faculty. The Committee therefore focused its effort on creating an intensive grant writing course, intended for independent pharmacy researchers without prior major grant awards, that would support writing for both career development and research grant applications and cater to faculty in translational, clinical sciences, and pharmacy practice, along with fellows and residents. To implement this grant writing course and other programs to advance research progress by pharmacy faculty, the Committee proposes three recommendations for consideration by AACP and one suggestion for consideration by colleges and schools of pharmacy.

2.
Am J Hum Genet ; 111(6): 1222-1238, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781976

RESUMO

Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA , Haploinsuficiência , Mutação de Sentido Incorreto , Humanos , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Haploinsuficiência/genética , Ácido gama-Aminobutírico/metabolismo , Transtornos do Neurodesenvolvimento/genética , Deficiências do Desenvolvimento/genética , Transtorno Autístico/genética , Células HEK293
3.
Nature ; 629(8012): 704-709, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693257

RESUMO

Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain remains unknown1-3. The major facilitator superfamily transporter FLVCR1 (also known as MFSD7B or SLC49A1) was recently determined to be a choline transporter but is not highly expressed at the blood-brain barrier, whereas the related protein FLVCR2 (also known as MFSD7C or SLC49A2) is expressed in endothelial cells at the blood-brain barrier4-7. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus and embryonic lethality, but the physiological role of FLVCR2 is unknown4,5. Here we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in both inward-facing and outward-facing states using cryo-electron microscopy. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of therapeutic agents into the brain.


Assuntos
Encéfalo , Colina , Proteínas de Membrana Transportadoras , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Colina/metabolismo , Microscopia Crioeletrônica , Técnicas In Vitro , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/ultraestrutura , Modelos Moleculares
4.
Nat Commun ; 15(1): 4380, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782905

RESUMO

SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17ß-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.


Assuntos
Primatas , Animais , Humanos , Sequência de Aminoácidos , Estradiol/metabolismo , Células HEK293 , Hominidae/genética , Hominidae/metabolismo , Mutação de Sentido Incorreto , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Primatas/genética , Pseudogenes , Especificidade por Substrato
5.
Pharmaceutics ; 16(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794309

RESUMO

The presence of mutagenic and carcinogenic N-nitrosamine impurities in medicinal products poses a safety risk. While incorporating antioxidants in formulations is a potential mitigation strategy, concerns arise regarding their interference with drug absorption by inhibiting intestinal drug transporters. Our study screened thirty antioxidants for inhibitory effects on key intestinal transporters-OATP2B1, P-gp, and BCRP in HEK-293 cells (OATP2B1) or membrane vesicles (P-gp, BCRP) using 3H-estrone sulfate, 3H-N-methyl quinidine, and 3H-CCK8 as substrates, respectively. The screen identified that butylated hydroxyanisole (BHA) and carnosic acid inhibited all three transporters (OATP2B1, P-gp, and BCRP), while ascorbyl palmitate (AP) inhibited OATP2B1 by more than 50%. BHA had IC50 values of 71 ± 20 µM, 206 ± 14 µM, and 182 ± 49 µM for OATP2B1, BCRP, and P-gp, respectively. AP exhibited IC50 values of 23 ± 10 µM for OATP2B1. The potency of AP and BHA was tested with valsartan, an OATP2B1 substrate, and revealed IC50 values of 26 ± 17 µM and 19 ± 11 µM, respectively, in HEK-293-OATP2B1 cells. Comparing IC50 values of AP and BHA with estimated intestinal concentrations suggests an unlikely inhibition of intestinal transporters at clinical concentrations of drugs formulated with antioxidants.

6.
Mol Cell ; 84(10): 1932-1947.e10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38703769

RESUMO

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.


Assuntos
Simulação de Dinâmica Molecular , Humanos , Células HEK293 , Relação Estrutura-Atividade , Mutação de Sentido Incorreto , Farmacogenética , Fenótipo , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Mutação , Conformação Proteica , Transporte Biológico , Fator 1 de Transcrição de Octâmero
7.
Nat Rev Drug Discov ; 23(4): 255-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267543

RESUMO

The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug-drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.


Assuntos
Proteínas de Membrana Transportadoras , Medicina de Precisão , Humanos , Interações Medicamentosas , Desenvolvimento de Medicamentos
8.
Cell Rep Med ; 5(1): 101356, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232690

RESUMO

This perspective highlights the importance of addressing social determinants of health (SDOH) in patient health outcomes and health inequity, a global problem exacerbated by the COVID-19 pandemic. We provide a broad discussion on current developments in digital health and artificial intelligence (AI), including large language models (LLMs), as transformative tools in addressing SDOH factors, offering new capabilities for disease surveillance and patient care. Simultaneously, we bring attention to challenges, such as data standardization, infrastructure limitations, digital literacy, and algorithmic bias, that could hinder equitable access to AI benefits. For LLMs, we highlight potential unique challenges and risks including environmental impact, unfair labor practices, inadvertent disinformation or "hallucinations," proliferation of bias, and infringement of copyrights. We propose the need for a multitiered approach to digital inclusion as an SDOH and the development of ethical and responsible AI practice frameworks globally and provide suggestions on bridging the gap from development to implementation of equitable AI technologies.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Pandemias , Determinantes Sociais da Saúde , COVID-19/epidemiologia , Idioma
10.
Diabetes Care ; 47(2): 208-215, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639712

RESUMO

OBJECTIVE: Metformin is the most common treatment for type 2 diabetes (T2D). However, there have been no pharmacogenomic studies for T2D in which a population of color was used in the discovery analysis. This study sought to identify genomic variants associated with metformin response in African American patients with diabetes. RESEARCH DESIGN AND METHODS: Patients in the discovery set were adult, African American participants from the Diabetes Multi-omic Investigation of Drug Response (DIAMOND), a cohort study of patients with T2D from a health system serving southeast Michigan. DIAMOND participants had genome-wide genotype data and longitudinal electronic records of laboratory results and medication fills. The genome-wide discovery analysis identified polymorphisms correlated to changes in glycated hemoglobin (HbA1c) levels among individuals on metformin monotherapy. Lead associations were assessed for replication in an independent cohort of African American participants from Kaiser Permanente Northern California (KPNC) and in European American participants from DIAMOND. RESULTS: The discovery set consisted of 447 African American participants, whereas the replication sets included 353 African American KPNC participants and 466 European American DIAMOND participants. The primary analysis identified a variant, rs143276236, in the gene ARFGEF3, which met the threshold for genome-wide significance, replicated in KPNC African Americans, and was still significant in the meta-analysis (P = 1.17 × 10-9). None of the significant discovery variants replicated in European Americans DIAMOND participants. CONCLUSIONS: We identified a novel and biologically plausible genetic variant associated with a change in HbA1c levels among African American patients on metformin monotherapy. These results highlight the importance of diversity in pharmacogenomic studies.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Adulto , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Metformina/uso terapêutico , Estudo de Associação Genômica Ampla/métodos , Negro ou Afro-Americano/genética , Hemoglobinas Glicadas , Variantes Farmacogenômicos , Estudos de Coortes , Polimorfismo de Nucleotídeo Único
11.
Nat Chem Biol ; 20(1): 62-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37474759

RESUMO

Cells interpret a variety of signals through G-protein-coupled receptors (GPCRs) and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different physiological responses despite generating similar levels of cAMP. We previously showed that some GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to elicit different physiological outputs. We show that generating cAMP from the Golgi leads to the regulation of a specific protein kinase A (PKA) target that increases the rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We further validated the physiological consequences of these observations in intact zebrafish and mice. Thus, we demonstrate that the same GPCR acting through the same second messenger regulates cardiac contraction and relaxation dependent on its subcellular location.


Assuntos
Transdução de Sinais , Peixe-Zebra , Camundongos , Animais , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Miócitos Cardíacos , Receptores Acoplados a Proteínas G/metabolismo
12.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 576-588, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38156758

RESUMO

Optimal treatment of infants with many renally cleared drugs must account for maturational differences in renal transporter (RT) activity. Pediatric physiologically-based pharmacokinetic (PBPK) models may incorporate RT activity, but this requires ontogeny profiles for RT activity in children, especially neonates, to predict drug disposition. Therefore, RT expression measurements from human kidney postmortem cortical tissue samples were normalized to represent a fraction of mature RT activity. Using these data, maximum likelihood estimated the distributions of RT activity across the pediatric age spectrum, including preterm and term neonates. PBPK models of four RT substrates (acyclovir, ciprofloxacin, furosemide, and meropenem) were evaluated with and without ontogeny profiles using average fold error (AFE), absolute average fold error (AAFE), and proportion of observations within the 5-95% prediction interval. Novel maximum likelihood profiles estimated ontogeny distributions for the following RT: OAT1, OAT3, OCT2, P-gp, URAT1, BCRP, MATE1, MRP2, MRP4, and MATE-2 K. Profiles for OAT3, P-gp, and MATE1 improved infant furosemide and neonate meropenem PBPK model AFE from 0.08 to 0.70 and 0.53 to 1.34 and model AAFE from 12.08 to 1.44 and 2.09 to 1.36, respectively, and improved the percent of data within the 5-95% prediction interval from 48% to 98% for neonatal ciprofloxacin simulations, respectively. Even after accounting for other critical population-specific maturational differences, novel RT ontogeny profiles substantially improved neonatal PBPK model performance, providing validated estimates of maturational differences in RT activity for optimal dosing in children.


Assuntos
Furosemida , Proteínas de Neoplasias , Lactente , Recém-Nascido , Criança , Humanos , Funções Verossimilhança , Meropeném , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Modelos Biológicos , Ciprofloxacina
14.
Res Sq ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37790518

RESUMO

SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17ß-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.

15.
Clin Pharmacol Ther ; 114(6): 1293-1303, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37657924

RESUMO

Environmental health science seeks to predict how environmental toxins, chemical toxicants, and prescription drugs accumulate and interact within the body. Xenobiotic transporters of the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies are major determinants of the uptake and disposition of xenobiotics across the kingdoms of life. The goal of this study was to integrate drug and environmental chemical interactions of mammalian ABC and SLC proteins in a centralized, integrative database. We built upon an existing publicly accessible platform-the "TransPortal"-which was updated with novel data and searchable features on transporter-interfering chemicals from manually curated literature data. The integrated resource TransPortal-TICBase (https://transportal.compbio.ucsf.edu) now contains information on 46 different mammalian xenobiotic transporters of the ABC- and SLC-type superfamilies, including 13 newly added rodent and 2 additional human drug transporters, 126 clinical drug-drug interactions, and a more than quadrupled expansion of the initial in vitro chemical interaction data from 1,402 to 6,296 total interactions. Based on our updated database, environmental interference with major human and rodent drug transporters occurs across the ABC- and SLC-type superfamilies, with kinetics indicating that some chemicals, such as the ionic liquid 1-hexylpyridinium chloride and the antiseptic chlorhexidine, can act as strong inhibitors with potencies similar or even higher than pharmacological model inhibitors. The new integrated web portal serves as a central repository of current and emerging data for interactions of prescription drugs and environmental chemicals with human drug transporters. This archive has important implications for predicting adverse drug-drug and drug-environmental chemical interactions and can serve as a reference website for the broader scientific community of clinicians and researchers.


Assuntos
Proteínas de Membrana Transportadoras , Xenobióticos , Animais , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Interações Medicamentosas , Proteínas Carreadoras de Solutos/metabolismo , Mamíferos/metabolismo
16.
Metabolites ; 13(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623829

RESUMO

The Thiamine Transporter 2 (THTR2) encoded by SLC19A3 plays an ill-defined role in the maintenance of tissue thiamine, thiamine monophosphate, and thiamine diphosphate (TDP) levels. To evaluate the impact of THTR2 on tissue thiamine status and metabolism, we expressed the human SLC19A3 transgene in the intestine of total body Slc19a3 knockout (KO) mice. Male and female wildtype (WT) and transgenic (TG) mice were fed either 17 mg/kg (1×) or 85 mg/kg (5×) thiamine hydrochloride diet, while KOs were only fed the 5× diet. Thiamine vitamers in plasma, red blood cells, duodenum, brain, liver, kidney, heart, and adipose tissue were measured. Untargeted metabolomics were performed on the brain tissues of groups with equivalent plasma thiamine. KO mice had ~two- and ~three-fold lower plasma and brain thiamine levels than WT on the 5× diet. Circulating vitamers were sensitive to diet and equivalent in TG and WT mice. However, TG had 60% lower thiamine but normal brain TDP levels regardless of diet, with subtle differences in the heart and liver. The loss of THTR2 reduced levels of nucleic acid and amino acid derivatives in the brain. Therefore, mutation or inhibition of THTR2 may alter the brain metabolome and reduce the thiamine reservoir for TDP biosynthesis.

17.
bioRxiv ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609337

RESUMO

SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17ß-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.

18.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333090

RESUMO

Membrane transporters play a fundamental role in the tissue distribution of endogenous compounds and xenobiotics and are major determinants of efficacy and side effects profiles. Polymorphisms within these drug transporters result in inter-individual variation in drug response, with some patients not responding to the recommended dosage of drug whereas others experience catastrophic side effects. For example, variants within the major hepatic Human organic cation transporter OCT1 (SLC22A1) can change endogenous organic cations and many prescription drug levels. To understand how variants mechanistically impact drug uptake, we systematically study how all known and possible single missense and single amino acid deletion variants impact expression and substrate uptake of OCT1. We find that human variants primarily disrupt function via folding rather than substrate uptake. Our study revealed that the major determinants of folding reside in the first 300 amino acids, including the first 6 transmembrane domains and the extracellular domain (ECD) with a stabilizing and highly conserved stabilizing helical motif making key interactions between the ECD and transmembrane domains. Using the functional data combined with computational approaches, we determine and validate a structure-function model of OCT1s conformational ensemble without experimental structures. Using this model and molecular dynamic simulations of key mutants, we determine biophysical mechanisms for how specific human variants alter transport phenotypes. We identify differences in frequencies of reduced function alleles across populations with East Asians vs European populations having the lowest and highest frequency of reduced function variants, respectively. Mining human population databases reveals that reduced function alleles of OCT1 identified in this study associate significantly with high LDL cholesterol levels. Our general approach broadly applied could transform the landscape of precision medicine by producing a mechanistic basis for understanding the effects of human mutations on disease and drug response.

20.
Clin Pharmacol Ther ; 114(2): 381-392, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37151050

RESUMO

Trimethoprim is predicted to inhibit several thiamine transporters, including the primary thiamine intestinal absorptive transporter, ThTR-2, and the hepatic and renal organic cation transporters, OCT1, OCT2, and MATEs. To investigate the effect of trimethoprim on thiamine absorption, studies were conducted in cells, mice, and healthy volunteers and supported by use of real-world data. In a randomized, crossover clinical study, seven healthy volunteers were given a single oral dose of thiamine or thiamine plus trimethoprim, followed by blood sampling. The thiamine area under the curve (AUC) increased with trimethoprim co-administration (P value = 0.031). Similar results were seen in mice. Trimethoprim appeared to act on thiamine absorption through inhibition of hepatic OCT1 as evidenced from its ability to modulate levels of isobutyrylcarnitine and propionylcarnitine, OCT1 biomarkers identified from metabolomic analyses. Real-world data further supported this finding, showing an association between trimethoprim use and higher levels of triglycerides, LDL cholesterol, and total cholesterol, consistent with OCT1 inhibition (P values: 2.2 × 10-16 , 5.75 × 10-7 , and 5.82 × 10-7 , respectively). These findings suggest that trimethoprim increases plasma levels of thiamine by inhibiting hepatic OCT1. Trimethoprim reduced urinary excretion and clearance of biomarkers for OCT2 and MATEs, consistent with inhibition of renal organic cation transporters. This inhibition did not appear to play a role in the observed increases in thiamine levels. This study highlights the potential for drug-nutrient interactions involving transporters, in addition to transporters' established role in drug-drug interactions.


Assuntos
Tiamina , Trimetoprima , Animais , Camundongos , Humanos , Tiamina/farmacologia , Trimetoprima/farmacologia , Proteínas de Membrana Transportadoras , Interações Alimento-Droga , Biomarcadores , Nutrientes , Cátions , Proteínas de Transporte de Cátions Orgânicos , Transportador 2 de Cátion Orgânico , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...