Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771696

RESUMO

Vegetable soybean, popularly known as edamame in Japan and mao dou in China is a specialty soybean. Green pods with physiologically mature beans are harvested, and whole pods or shelled beans are used as a fresh or frozen vegetable. Vegetable soybeans are prepared in diverse ways, and they are highly nutritious, with excellent taste properties. Unlike grain soybeans, it is perishable. In this review, the chronological progression of area, production, export, import, and expansion of vegetable soybeans and potential for further expansion is discussed. Available information on current ongoing research and development activities in various countries around the world are presented, and their relevance is discussed. At present, the production and consumption of vegetable soybeans are mainly in East and Southeast Asia, with Japan as the largest importing country that dictates the global market. However, interest and trend in cultivation of this crop in other regions has increased significantly. Lack of germplasm or suitable varieties is a major constraint in vegetable soybean production and expansion in countries outside East and Southeast Asia. Most of the vegetable soybean varieties are genetically related and are susceptible to biotic and abiotic stresses. Extensive research and breeding of vegetable soybeans are still restricted in a few countries such as China, Japan, Taiwan and the USA. The need for focused research and development activities with concern for the environment, farmers' and processors' profit, consumers' preference, quality, and nutrition are emphasized.

2.
Mol Biol Rep ; 50(4): 3787-3814, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36692674

RESUMO

Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.


Assuntos
Glycine max , Multiômica , Glycine max/genética , Glycine max/metabolismo , Melhoramento Vegetal , Genômica/métodos , Estresse Fisiológico/genética
3.
J Virol Methods ; 268: 24-31, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30890330

RESUMO

Mungbean yellow mosaic India virus (MYMIV) infecting soybean and other legumes causes yellow mosaic disease (YMD). Evaluation of soybean genotypes for YMD resistance involves field screening at disease hot spots or in a protected environment using infectious clones or viruliferous whiteflies as sources of virus inocula. Development of efficient virus inoculation and quantification protocols to screen soybean genetic stocks against YMD is imperative for breeding resistant varieties. Binary plasmids harbouring complete, tandem dimeric genomic components DNA A and DNA B of MYMIV-soybean isolate were engineered. The infectivity of the clones was demonstrated in soybean genotypes JS335 and UPSM534 that display contrasting YMD resistance. As a follow-up, soybean germplasm lines, breeding lines, and representative cultivars that were initially screened at an YMD hot-spot were then subjected to Agrobacterium-based infection with MYMIV. Quantitative real time polymerase chain reaction (qRT-PCR) based copy number analysis of MYMIV genomic components allowed soybean genotypes to be classified into three discrete categories; resistant, moderately resistant and susceptible to the viral infection. Thus, a soybean germplasm disease screening system based on agro-infection and qRT-PCR based quantification of MYMIV was developed to facilitate breeding YMD resistant soybean. The implications of this study for obtaining YMD resistant soybean cultivars are discussed.


Assuntos
Begomovirus/patogenicidade , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , DNA Viral/genética , Genótipo , Filogenia , Doenças das Plantas/virologia , Análise de Sequência de DNA , Glycine max/virologia
4.
J Food Sci Technol ; 50(2): 353-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24425927

RESUMO

This investigation was conducted in order to determine the degree of biochemical changes during natural ageing of soybean seeds borne on different positions on stem axis. Biochemical analysis of field grown soybean seeds revealed significant differences in their oil and protein contents as a function of nodal positions. Both oil and protein content decreased after 180 days of storage (DOS) at all the nodal positions. Proportions of membrane lipids in seeds were less in basal as compared to apical positions and their proportion in stored seeds also decreased with increasing storage periods. The content of starch, total soluble sugars and reducing sugars in seeds decreased during storage for 180 days but it didn't show positional variations in their contents. The extent of lipid peroxidation increased during storage was associated with the corresponding decrease in the activities of antioxidant enzymes viz catalase and peroxidase in seeds. Seeds at basal positions showed higher rate of lipid peroxidation and lower peroxidase activity as compared to apical positions. Results suggest that soybean seeds collected from basal positions showed higher deteriorative changes during storage in comparison to apical positions that might be related to higher lipid content in seeds from basal portion of soybean stem axis as compared to apical portion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...