Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Expert Opin Ther Pat ; 34(7): 547-564, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308658

RESUMO

INTRODUCTION: The Farnesoid X receptor (FXR) is a key transcription factor that is involved in the bile acid signaling network. The modulation of the FXR activity influences glucose and lipid homeostasis, reduces obesity and insulin resistance, as well as it regulates the pathogenesis of inflammatory and metabolic disorders. FXR ligands have therefore emerged in drug discovery as promising therapeutic agents for the prevention and treatment of gastrointestinal and liver diseases, including cancer. AREAS COVERED: Recent advances in the field of FXR modulators are reviewed, with a particular attention on patent applications filed in the past 5 years related to both the discovery and development of FXR targeting drugs. EXPERT OPINION: FXR agonists have proven their efficacy and safety in humans and have shown a significant potential as clinical agents to treat metabolic and inflammatory associated conditions. However, several challenges, including adverse events such as pruritus, remain to be solved. Current studies aim to gain insights into the pathophysiological mechanisms by which FXR regulates metabolism and inflammation in terms of tissue/organ/isoform-specificity, post-translational modifications and coregulatory proteins, on the route of novel, improved FXR modulators.


Assuntos
Desenvolvimento de Medicamentos , Hepatopatias , Patentes como Assunto , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Animais , Ligantes , Hepatopatias/tratamento farmacológico , Hepatopatias/fisiopatologia , Hepatopatias/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Inflamação/metabolismo , Descoberta de Drogas , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/fisiopatologia , Ácidos e Sais Biliares/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
J Med Chem ; 67(5): 4150-4169, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417155

RESUMO

The nuclear receptor ssDAF-12 has been recognized as the key molecular player regulating the life cycle of the nematode parasite Strongyloides stercoralis. ssDAF-12 ligands permit the receptor to function as an on/off switch modulating infection, making it vulnerable to therapeutic intervention. In this study, we report the design and synthesis of a set of novel dafachronic acid derivatives, which were used to outline the first structure-activity relationship targeting the ssDAF-12 receptor and to unveil hidden properties shared by the molecular shape of steroidal ligands that are relevant to the receptor binding and modulation. Moreover, biological results led to the discovery of sulfonamide 3 as a submicromolar ssDAF-12 agonist endowed with a high receptor selectivity, no toxicity, and improved properties, as well as to the identification of unprecedented ssDAF-12 antagonists that can be exploited in the search for novel chemical tools and alternative therapeutic approaches for treating parasitism such as Strongyloidiasis.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Estrongiloidíase/tratamento farmacológico , Estrongiloidíase/parasitologia , Strongyloides stercoralis/metabolismo , Esteroides/uso terapêutico , Estágios do Ciclo de Vida , Relação Estrutura-Atividade
3.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067588

RESUMO

Mometasone furoate is a synthetic corticosteroid used in the treatment of skin inflammatory conditions, hay fever and asthma. The industrial manufacturing routes to mometasone furoate are generally accompanied by the formation of numerous process impurities that need to be detected and quantified, as requested by regulatory authorities. The ready availability of such impurities in the required quantity and purity is therefore essential for toxicological studies, analytical method development and process validation. Herein, we report the multi-gram scale preparation of 21'-chloro-(16'α-methyl-3',11',20'-trioxo-pregna-1',4'-dien-17'-yl)-furan-2-carboxylate (mometasone furoate EP impurity C), one of the known impurities of mometasone furoate. This study also includes the systematic investigation of the final acylation step, as well as the characterization of the difuroate enol ether intermediate and its conversion to the target impurity C.


Assuntos
Asma , Pregnadienodiois , Humanos , Furoato de Mometasona , Acilação
4.
Eur J Med Chem ; 261: 115851, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37813065

RESUMO

The activation of TGR5 bestows on bile acids the ability to modulate nongenomic signaling pathways, which are responsible of physiological actions including immunosuppressive and anti-inflammatory properties as well as the regulation of glucose metabolism and energy homeostasis. TGR5 agonists have therefore emerged in drug discovery and preclinical appraisals as promising compounds for the treatment of liver diseases and metabolic syndrome. In this study, we have been devising site-selected chemical modifications of the bile acid scaffold to provide novel chemical tools able to modulate the functions of TGR5 in different tissues. Biological results of the tested collection of semisynthetic cholic acid derivatives were used to extend the structure-activity relationships of TGR5 agonists and to clarify the molecular basis and functional role of TGR5 hot-spots in the receptor activation and selectivity. Some unexpected properties deriving from the molecular structure of bile acids have been unveiled as relevant to the receptor activation and may hence be used to design novel, selective and potent TGR5 agonists.


Assuntos
Ácidos e Sais Biliares , Receptores Acoplados a Proteínas G , Ácido Cólico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Ácidos e Sais Biliares/farmacologia , Estrutura Molecular
5.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982608

RESUMO

PD-1/PD-L1 protein complex is attracting a great deal of interest as a drug target for the design of immune therapies able to block its assembly. Although some biologic drugs have entered clinical use, their poor response rate in patients are demanding further efforts to design small molecule inhibitors of PD-1/PD-L1 complex with higher efficacy and optimal physicochemical properties. Dysregulation of pH in the tumor microenvironment is indeed one of the key mechanisms promoting drug resistance and lack of response in cancer therapy. Integrating computational and biophysical approaches, herein we report a screening campaign that has led to identifying VIS310 as a novel ligand of PD-L1, with physicochemical properties enabling a pH-dependent binding potency. Additional optimization efforts by analogue-based screening have been instrumental to disclosing VIS1201, which exhibits improved binding potency against PD-L1 and is able to inhibit PD-1/PD-L1 complex formation in a ligand binding displacement assay. While providing preliminary structure-activity relationships (SARs) of a novel class of PD-L1 ligands, our results lay the foundation for the discovery of immunoregulatory small molecules resilient to tumor microenvironmental conditions for escaping drug-resistance mechanisms.


Assuntos
Antígeno B7-H1 , Microambiente Tumoral , Humanos , Antígeno B7-H1/metabolismo , Ligantes , Receptor de Morte Celular Programada 1/metabolismo , Concentração de Íons de Hidrogênio
6.
ACS Sens ; 8(3): 1064-1075, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36847549

RESUMO

DPP IV, otherwise known as CD26 lymphocyte T surface antigen, is a transmembrane glycoprotein also found in circulation in the blood. It plays an important role in several processes like glucose metabolism and T-cell stimulation. Moreover, it is overexpressed in renal, colon, prostate, and thyroid human carcinoma tissues. It can also serve as a diagnostic in patients with lysosomal storage diseases. The biological and clinical importance of having readouts for the activity of this enzyme, in physiological and disease conditions, has led us to design a near-infrared (NIR) fluorimetric probe that also has the characteristics of being ratiometric and excitable by two simultaneous NIR photons. The probe consists of assembling an enzyme recognition group (Gly-Pro) (Mentlein, 1999; Klemann et al., 2016) on the two-photon (TP) fluorophore (derivative of dicyanomethylene-4H-pyran, DCM-NH2) disturbing its NIR characteristic internal charge transfer (ICT) emission spectrum. When the dipeptide group is released by the DPP IV-specific enzymatic action, the donor-acceptor DCM-NH2 is restored, forming a system that shows high ratiometric fluorescence output. With this new probe, we have been able to detect, quickly and efficiently, the enzymatic activity of DPP IV in living cells, human tissues, and whole organisms, using zebrafish. In addition, due to the possibility of being excited by two photons, we can avoid the autofluorescence and subsequent photobleaching that the raw plasma has when it is excited by visible light, achieving detection of the activity of DPP IV in that medium without interference.


Assuntos
Fótons , Peixe-Zebra , Animais , Humanos , Células HeLa , Peixe-Zebra/metabolismo , Dipeptidil Peptidase 4/metabolismo , Corantes Fluorescentes/química
7.
Mol Divers ; 27(1): 511-515, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35416620

RESUMO

A new Lewis acid promoted domino isocyanide insertion/5-exo-dig cyclization of readily available Strecker 3-component adducts to 4-substituted 5-aminoimidazole derivatives is herein reported. Despite their potential as relevant heterocyclic scaffolds in medicinal chemistry programs, this class of compounds is still underrepresented, with current synthetic strategies poorly efficient in terms of timing and yields. To this end, we show how the exploitation of unconventional reactivities of isocyanides, promoted by ytterbium-triflate, could represent a key resource to enable a fast and easy access to such an unexplored area of the chemical space.


Assuntos
Cianetos , Itérbio , Ciclização , Cianetos/química , Imidazóis/química
8.
Eur J Med Chem ; 242: 114652, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049273

RESUMO

Herein we report our synthetic efforts in supporting the development of the bile alcohol sulfate INT-767, a FXR/TGR5 dual agonist with remarkable therapeutic potential for liver disorders. We describe the process development to a final route for large scale preparation and analogues synthesis. Key sequences include Grignard addition, a one-pot two-step shortening-reduction of the carboxylic side chain, and the final sulfation reaction. The necessity for additional steps such as the protection/deprotection of hydroxyl groups at the steroidal body was also evaluated for step-economy and formation of side-products. Critical bottlenecks such as the side chain degradation have been tackled using flow technology before scaling-up individual steps. The final synthetic route may be successfully employed to produce the amount of INT-767 required to support late-stage clinical development of the compound. Furthermore, potential metabolites have been synthesized, characterized and evaluated for their ability to modulate FXR and TGR5 receptors providing key reference standards for future drug investigations, as well as offering further insights into the structure-activity relationships of this class of compounds.


Assuntos
Ácidos e Sais Biliares , Sódio , Colestanóis , Sulfatos , Compostos de Enxofre
9.
Antioxidants (Basel) ; 11(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35883857

RESUMO

SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients' age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include defects in the homeostatic processes that control the cellular redox and its pivotal role in sustaining the immuno-inflammatory response to the host and the protection against oxidative stress and tissue degeneration. Pathogens may take advantage of such age-dependent abnormalities. Alterations of the thiol redox balance in the lung tissue and lining fluids may influence the risk of infection, and the host capability to respond to pathogens and to avoid severe complications. SARS-CoV-2, likewise other viruses, such as HIV, influenza, and HSV, benefits in its replication cycle of pro-oxidant conditions that the same viral infection seems to induce in the host cell with mechanisms that remain poorly understood. We recently demonstrated that the pro-oxidant effects of SARS-CoV-2 infection are associated with changes in the cellular metabolism and transmembrane fluxes of Cys and GSH. These appear to be the consequence of an increased use of Cys in viral protein synthesis and to ER stress pathway activation that interfere with transcription factors, as Nrf2 and NFkB, important to coordinate the metabolism of GSH with other aspects of the stress response and with the pro-inflammatory effects of this virus in the host cell. This narrative review article describes these cellular and molecular aspects of SARS-CoV-2 infection, and the role that antivirals and cytoprotective agents such as N-acetyl cysteine may have to limit the cytopathic effects of this virus and to recover tissue homeostasis after infection.

10.
IUBMB Life ; 74(1): 93-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390301

RESUMO

Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-host cell interaction with proposed role in the cytopathic and inflammatory pathogenesis of this viral infection. The role of the NF-kB pathway in these cellular processes remains poorly characterized. When investigated in VERO-E6 cells, SARS-CoV-2 infection was found to markedly stimulate NF-kB protein expression and activity. NF-kB activation occurs early in the infection process (6 hpi) and it is associated with increased MAPK signaling and expression of the UPR inducer IRE-1α. These signal transduction processes characterize the cellular stress response to the virus promoting a pro-inflammatory environment and caspase activation in the host cell. Inhibition of viral replication by the viral protease inhibitor Nelfinavir reverts all these molecular changes also stimulating c-Jun expression, a key component of the JNK/AP-1 pathway with important role in the IRE-1α-mediated transcriptional regulation of stress response genes with anti-inflammatory and cytoprotection function. The present study demonstrates that UPR signaling and its interaction with cellular MAPKs and the NF-kB activity are important aspects of SARS-CoV-2-host cell interaction that deserve further investigation to identify more efficient therapies for this viral infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , NF-kappa B/metabolismo , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , COVID-19/virologia , Caspase 9/metabolismo , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Células Vero
11.
Artigo em Inglês | MEDLINE | ID: mdl-34948629

RESUMO

BACKGROUND: Healthcare-associated infections caused by multi-drug resistant (MDR) pathogens are associated with increased mortality and morbidity among hospitalized patients. Inanimate surfaces, and in particular high-touch surfaces, have often been described as the source for outbreaks of nosocomial infections. The present work aimed to evaluate the efficacy of a last-generation mobile (robotic) irradiation UV-C light device R2S on MDR microorganisms in inanimate surfaces and its translation to hospital disinfection. METHODS: The efficacy of R2S system was evaluated in environmental high-touch surfaces of two separate outpatient rooms of Perugia Hospital in Italy. The static UV-C irradiation effect was investigated on both the bacterial growth of S. aureus, MRSA, P. aeruginosa, and K. pneumoniae KPC and photoreactivation. The antimicrobial activity was also tested on different surfaces, including glass, steel, and plastic. RESULTS: In the environmental tests, the R2S system decreased the number of bacteria, molds, and yeasts of each high-touch spot surface (HTSs) compared with manual sanitization. UV-C light irradiation significantly inhibits in vitro bacterial growth, also preventing photoreactivation. UV-C light bactericidal activity on MDR microorganisms is affected by the type of materials of inanimate surfaces. CONCLUSIONS: The last-generation mobile R2S system is a more reliable sanitizing procedure compared with its manual counterpart.


Assuntos
Infecção Hospitalar , Preparações Farmacêuticas , Procedimentos Cirúrgicos Robóticos , Desinfecção , Humanos , Staphylococcus aureus , Raios Ultravioleta
12.
RSC Med Chem ; 12(7): 1046-1064, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34355177

RESUMO

Urea and thiourea represent privileged structures in medicinal chemistry. Indeed, these moieties constitute a common framework of a variety of drugs and bioactive compounds endowed with a broad range of therapeutic and pharmacological properties. Herein, we provide an overview of the state-of-the-art of urea and thiourea-containing pharmaceuticals. We also review the diverse approaches pursued for (thio)urea bioisosteric replacements in medicinal chemistry applications. Finally, representative examples of recent advances in the synthesis of urea- and thiourea-based compounds by enabling chemical tools are discussed.

13.
Redox Biol ; 45: 102041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146958

RESUMO

Viral infections sustain their replication cycle promoting a pro-oxidant environment in the host cell. In this context, specific alterations of the levels and homeostatic function of the tripeptide glutathione have been reported to play a causal role in the pro-oxidant and cytopathic effects (CPE) of the virus. In this study, these aspects were investigated for the first time in SARS-CoV2-infected Vero E6 cells, a reliable and well-characterized in vitro model of this infection. SARS-CoV2 markedly decreased the levels of cellular thiols, essentially lowering the reduced form of glutathione (GSH). Such an important defect occurred early in the CPE process (in the first 24 hpi). Thiol analysis in N-acetyl-Cys (NAC)-treated cells and membrane transporter expression data demonstrated that both a lowered uptake of the GSH biosynthesis precursor Cys and an increased efflux of cellular thiols, could play a role in this context. Increased levels of oxidized glutathione (GSSG) and protein glutathionylation were also observed along with upregulation of the ER stress marker PERK. The antiviral drugs Remdesivir (Rem) and Nelfinavir (Nel) influenced these changes at different levels, essentially confirming the importance or blocking viral replication to prevent GSH depletion in the host cell. Accordingly, Nel, the most potent antiviral in our in vitro study, produced a timely activation of Nrf2 transcription factor and a GSH enhancing response that synergized with NAC to restore GSH levels in the infected cells. Despite poor in vitro antiviral potency and GSH enhancing function, Rem treatment was found to prevent the SARS-CoV2-induced glutathionylation of cellular proteins. In conclusion, SARS-CoV2 infection impairs the metabolism of cellular glutathione. NAC and the antiviral Nel can prevent such defect in vitro.


Assuntos
COVID-19 , Glutationa , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Oxirredução , RNA Viral , SARS-CoV-2
14.
Nat Metab ; 3(5): 595-603, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031591

RESUMO

Bile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain1, yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs2 and an established regulator of peripheral metabolism3-8. Notably, peripheral or central administration of a BA mix or a TGR5-specific BA mimetic (INT-777) exerted an anorexigenic effect in wild-type mice, while whole-body, neuron-specific or agouti-related peptide neuronal TGR5 deletion caused a significant increase in food intake. Accordingly, orexigenic peptide expression and secretion were reduced after short-term TGR5 activation. In vitro studies demonstrated that activation of the Rho-ROCK-actin-remodelling pathway decreases orexigenic agouti-related peptide/neuropeptide Y (AgRP/NPY) release in a TGR5-dependent manner. Taken together, these data identify a signalling cascade by which BAs exert acute effects at the transition between fasting and feeding and prime the switch towards satiety, unveiling a previously unrecognized role of physiological feedback mediated by BAs in the central nervous system.


Assuntos
Ácidos e Sais Biliares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Anorexia/etiologia , Anorexia/metabolismo , Linhagem Celular , Ingestão de Alimentos , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/agonistas
15.
Org Biomol Chem ; 19(24): 5403-5412, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34056641

RESUMO

The four cyclopropyl stereoisomers of Δ7-dafachronic acids were prepared from the bile acid hyodeoxycholic acid and employed as chemical tools to exploit the importance of the orientation and spatial disposition of the carboxyl tail and the C25-methyl group for the binding at the DAF-12 receptor. The synthesis route was based on (a) Walden inversion and stereoselective PtO2-hydrogenation to convert the L-shaped 5ß-cholanoid scaffold into the planar 5α-sterol intermediate; (b) two-carbon homologation of the side chain by Wittig and cyclopropanation reaction; and (c) formation of the 3-keto group and Δ7 double bond. The synthesized isomers were isolated and tested for their activity as DAF-12 ligands by AlphaScreen assays. Results showed a significant loss of potency and efficacy for all the four stereoisomers when compared to the parent endogenous ligand. Computational analysis has evidenced the configurational and conformational arrangement of both the carboxylic and the C25-methyl group of dafachronic acids as key structural determinants for DAF-12 binding and activation.

16.
ChemMedChem ; 16(3): 568-577, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33085193

RESUMO

The interaction between programmed cell death-1 (PD-1) and its ligand PD-L1 activates a coinhibitory signal that blocks T-cell activation, promoting the immune escape process in the tumor microenvironment. Development of monoclonal antibodies targeting and inhibiting PD-1/PD-L1 interaction as anticancer immunotherapies has proved successful in multiple clinical settings and for various types of cancer. Notwithstanding, limitations exist with the use of these biologics, including drug resistance and narrow therapeutic response rate in a majority of patients, that demand for the design of more efficacious small molecule-based immunotherapies. Alteration of pH in the tumor microenvironment is a key factor that is involved in promoting drug resistance, tumor survival and progression. In this study, we have investigated the effect of pH shifts on binding properties of distinct classes of PD-L1 inhibitors, including macrocyclic peptide and small molecules. Results expand structure-activity relationships of PD-L1 inhibitors, providing insights into structural features and physicochemical properties that are useful for the design of ligands that may escape a drug resistance mechanism associated to variable pH conditions of tumor microenvironment.


Assuntos
Anticorpos Monoclonais/metabolismo , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/síntese química , Antineoplásicos Imunológicos/química , Antígeno B7-H1/metabolismo , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Imunoterapia , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Relação Estrutura-Atividade
17.
Mol Pharmacol ; 98(4): 343-349, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32764096

RESUMO

For decades, traditional drug discovery has used natural product and synthetic chemistry approaches to generate libraries of compounds, with some ending as promising drug candidates. A complementary approach has been to adopt the concept of biomimicry of natural products and metabolites so as to improve multiple drug-like features of the parent molecule. In this effort, promiscuous and weak interactions between ligands and receptors are often ignored in a drug discovery process. In this Emerging Concepts article, we highlight microbial metabolite mimicry, whereby parent metabolites have weak interactions with their receptors that then have led to discrete examples of more potent and effective drug-like molecules. We show specific examples of parent-metabolite mimics with potent effects in vitro and in vivo. Furthermore, we show examples of emerging microbial ligand-receptor interactions and provide a context in which these ligands could be improved as potential drugs. A balanced conceptual advance is provided in which we also acknowledge potential pitfalls-hyperstimulation of finely balanced receptor-ligand interactions could also be detrimental. However, with balance, we provide examples of where this emerging concept needs to be tested. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry is a novel way to expand on the chemical repertoire of future drugs. The emerging concept is now explained using specific examples of the discovery of therapeutic leads from microbial metabolites.


Assuntos
Bactérias/química , Produtos Biológicos/química , Indóis/farmacologia , Descoberta de Drogas , Humanos , Indóis/química , Ligantes , Mimetismo Molecular
18.
J Chromatogr A ; 1625: 461310, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709352

RESUMO

With the selection of partially saturated 2H-indazoles as model compounds, we demonstrate the possibility to use Whelk-O1 chiral stationary phases (CSPs) to succeed in efficient small-scale preparative enantioseparations. Runs of three consecutive liquid chromatography injections (about 300 µg of racemate repeatedly injected in a 100 µL loop) produced groups of peaks without band contamination (α = 1.2 and RS = 2.57). With this procedure approximately 3.0 mg of each enantiomer, with enantiomeric excess ≥ 97% were obtained. Very profitably, the high volatility of n-hexane used as the sole eluent facilitated the solvent evaporation after the enantiomer recovery. High resolution mass spectrometry analysis confirmed that the chemical identity of the two enantiomers was preserved along the entire process. The ability of Whelk-O1 phases in enantioseparating structurally similar compounds was confirmed with the analysis of other two racemates. Moreover, the relevant chemoselectivity exhibited by the CSP towards the three racemates should allow to simultaneously optimizing the enantioselectivity of different analytes and perform small-scale enantioresolutions of different compounds during the same run. In this study, the integration of experimental off-line electronic circular dichroism analysis with ab initio time-dependent density-functional theory simulations facilitated the assignment of the absolute configuration of the single enantiomers, while a molecular dynamics protocol can be useful to make a priori predictions of the enantioseparation ability of CSP towards selected compounds.


Assuntos
Cromatografia Líquida/métodos , Indazóis/química , Simulação de Dinâmica Molecular , Indazóis/síntese química , Solventes , Estereoisomerismo
19.
J Biol Chem ; 295(33): 11866-11876, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32616652

RESUMO

Garcinoic acid (GA or δ-T3-13'COOH), is a natural vitamin E metabolite that has preliminarily been identified as a modulator of nuclear receptors involved in ß-amyloid (Aß) metabolism and progression of Alzheimer's disease (AD). In this study, we investigated GA's effects on Aß oligomer formation and deposition. Specifically, we compared them with those of other vitamin E analogs and the soy isoflavone genistein, a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that has therapeutic potential for managing AD. GA significantly reduced Aß aggregation and accumulation in mouse cortical astrocytes. Similarly to genistein, GA up-regulated PPARγ expression and apolipoprotein E (ApoE) efflux in these cells with an efficacy that was comparable with that of its metabolic precursor δ-tocotrienol and higher than those of α-tocopherol metabolites. Unlike for genistein and the other vitamin E compounds, the GA-induced restoration of ApoE efflux was not affected by pharmacological inhibition of PPARγ activity, and specific activation of pregnane X receptor (PXR) was observed together with ApoE and multidrug resistance protein 1 (MDR1) membrane transporter up-regulation in both the mouse astrocytes and brain tissue. These effects of GA were associated with reduced Aß deposition in the brain of TgCRND8 mice, a transgenic AD model. In conclusion, GA holds potential for preventing Aß oligomerization and deposition in the brain. The mechanistic aspects of GA's properties appear to be distinct from those of other vitamin E metabolites and of genistein.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Benzopiranos/farmacologia , Encéfalo/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Vitamina E/análogos & derivados , Peptídeos beta-Amiloides/ultraestrutura , Animais , Benzopiranos/farmacocinética , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Camundongos , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/patologia , Vitamina E/farmacocinética , Vitamina E/farmacologia
20.
Gastroenterology ; 159(3): 956-968.e8, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485177

RESUMO

BACKGROUND & AIMS: Renewal and patterning of the intestinal epithelium is coordinated by intestinal stem cells (ISCs); dietary and metabolic factors provide signals to the niche that control ISC activity. Bile acids (BAs), metabolites in the gut, signal nutrient availability by activating the G protein-coupled bile acid receptor 1 (GPBAR1, also called TGR5). TGR5 is expressed in the intestinal epithelium, but it is not clear how its activation affects ISCs and regeneration of the intestinal epithelium. We studied the role of BAs and TGR5 in intestinal renewal, and regulation of ISC function in mice and intestinal organoids. METHODS: We derived intestinal organoids from wild-type mice and Tgr5-/- mice, incubated them with BAs or the TGR5 agonist INT-777, and monitored ISC function by morphologic analyses and colony-forming assays. We disrupted Tgr5 specifically in Lgr5-positive ISCs in mice (Tgr5ISC-/- mice) and analyzed ISC number, proliferation, and differentiation by flow cytometry, immunofluorescence, and organoid assays. Tgr5ISC-/- mice were given cholecystokinin; we measured the effects of BA release into the intestinal lumen and on cell renewal. We induced colitis in Tgr5ISC-/- mice by administration of dextran sulfate sodium; disease severity was determined based on body weight, colon length, and histopathology analysis of colon biopsies. RESULTS: BAs and TGR5 agonists promoted growth of intestinal organoids. Administration of cholecystokinin to mice resulted in acute release of BAs into the intestinal lumen and increased proliferation of the intestinal epithelium. BAs and Tgr5 expression in ISCs were required for homeostatic intestinal epithelial renewal and fate specification, and for regeneration after colitis induction. Tgr5ISC-/- mice developed more severe colitis than mice without Tgr5 disruption in ISCs. ISCs incubated with INT-777 increased activation of yes-associated protein 1 (YAP1) and of its upstream regulator SRC. Inhibitors of YAP1 and SRC prevented organoid growth induced by TGR5 activation. CONCLUSIONS: BAs promote regeneration of the intestinal epithelium via activation of TGR5 in ISCs, resulting in activation of SRC and YAP and activation of their target genes. Release of endogenous BAs in the intestinal lumen is sufficient to promote ISC renewal and drives regeneration in response to injury.


Assuntos
Células-Tronco Adultas/fisiologia , Ácidos e Sais Biliares/metabolismo , Colite/patologia , Mucosa Intestinal/patologia , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/fisiologia , Células Cultivadas , Ácidos Cólicos/farmacologia , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Organoides , Cultura Primária de Células , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas de Sinalização YAP , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...