Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20164, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978238

RESUMO

Environmental DNA metabarcoding is increasingly implemented in biodiversity monitoring, including phytoplankton studies. Using 21 mock communities composed of seven unicellular diatom and dinoflagellate algae, assembled with different composition and abundance by controlling the number of cells, we tested the accuracy of an eDNA metabarcoding protocol in reconstructing patterns of alpha and beta diversity. This approach allowed us to directly evaluate both qualitative and quantitative metabarcoding estimates. Our results showed non-negligible rates (17-25%) of false negatives (i.e., failure to detect a taxon in a community where it was included), for three taxa. This led to a statistically significant underestimation of metabarcoding-derived alpha diversity (Wilcoxon p = 0.02), with the detected species richness being lower than expected (based on cell numbers) in 8/21 mock communities. Considering beta diversity, the correlation between metabarcoding-derived and expected community dissimilarities was significant but not strong (R2 = 0.41), indicating suboptimal accuracy of metabarcoding results. Average biovolume and rDNA gene copy number were estimated for the seven taxa, highlighting a potential, though not exhaustive, role of the latter in explaining the recorded biases. Our findings highlight the importance of mock communities for assessing the reliability of phytoplankton eDNA metabarcoding studies and identifying their limitations.


Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Código de Barras de DNA Taxonômico/métodos , Fitoplâncton/genética , Reprodutibilidade dos Testes , Biodiversidade , DNA Ambiental/genética , Monitoramento Ambiental/métodos
2.
PeerJ ; 11: e15959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37814629

RESUMO

Windstorms and salvage logging lead to huge soil disturbance in alpine spruce forests, potentially affecting soil-living arthropods. However, the impacts of forest loss and possible interactions with underlying ecological gradients on soil microarthropod communities remain little known, especially across different environmental conditions. Here we used DNA metabarcoding approach to study wind-induced disturbances on forest communities of springtails and soil mites. In particular, we aimed to test the effect of forest soil disturbance on the abundance, richness, species composition, and functional guilds of microarthropods. We sampled 29 pairs of windfall-forest sites across gradients of elevation, precipitation, aspect and slope, 2 years after a massive windstorm, named Vaia, which hit North-Eastern Italy in October 2018. Our results showed that wind-induced disturbances led to detrimental impacts on soil-living communities. Abundance of microarthropods decreased in windfalls, but with interacting effects with precipitation gradients. Operative Taxonomic Units (OTU) richness strongly decreased in post-disturbance sites, particularly affecting plant-feeder trophic guilds. Furthermore, species composition analyses revealed that communities occurring in post-disturbance sites were different to those in undisturbed forests (i.e., stands without wind damage). However, variables at different spatial scales played different roles depending on the considered taxon. Our study contributes to shed light on the impacts on important, but often neglected arthropod communities after windstorm in spruce forests. Effects of forest disturbance are often mediated by underlying large scale ecological gradients, such as precipitation and topography. Massive impacts of stronger and more frequent windstorms are expected to hit forests in the future; given the response we recorded, mediated by environmental features, forest managers need to take site-specific conservation measures.


Assuntos
Artrópodes , Ácaros , Animais , Florestas , Solo , Plantas
3.
PLoS One ; 18(7): e0288986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471380

RESUMO

The European beech (Fagus sylvatica L.) is one of the most widespread forest trees in Europe whose distribution and intraspecific diversity has been largely shaped by repeated glacial cycles. Previous studies, mainly based on palaeobotanical evidence and a limited set of chloroplast and nuclear genetic markers, highlighted a complex phylogeographic scenario, with southern and western Europe characterized by a rather heterogeneous genetic structure, as a result of recolonization from different glacial refugia. Despite its ecological and economic importance, the genome of this broad-leaved tree has only recently been assembled, and its intra-species genomic diversity is still largely unexplored. Here, we performed whole-genome resequencing of nine Italian beech individuals sampled from two stands located in the Alpine and Apennine mountain ranges. We investigated patterns of genetic diversity at chloroplast, mitochondrial and nuclear genomes and we used chloroplast genomes to reconstruct a temporally-resolved phylogeny. Results allowed us to test European beech differentiation on a whole-genome level and to accurately date their divergence time. Our results showed comparable, relatively high levels of genomic diversity in the two populations and highlighted a clear differentiation at chloroplast, mitochondrial and nuclear genomes. The molecular clock analysis indicated an ancient split between the Alpine and Apennine populations, occurred between the Günz and the Riss glaciations (approximately 660 kyrs ago), suggesting a long history of separation for the two gene pools. This information has important conservation implications in the context of adaptation to ongoing climate changes.


Assuntos
Fagus , Humanos , Fagus/genética , Europa (Continente) , Itália , Filogeografia , Filogenia , Árvores
4.
Sci Rep ; 13(1): 4346, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928612

RESUMO

In light of the dramatic decline in amphibian biodiversity, new cost-efficient tools to rapidly monitor species abundance and population genetic diversity in space and time are urgently needed. It has been amply demonstrated that the use of environmental DNA (eDNA) for single-species detection and characterization of community composition can increase the precision of amphibian monitoring compared to traditional (observational) approaches. However, it has been suggested that the efficiency and accuracy of the eDNA approach could be further improved by more timely sampling; in addition, the quality of genetic diversity data derived from the same DNA has been confirmed in other vertebrate taxa, but not amphibians. Given the availability of previous tissue-based genetic data, here we use the common frog Rana temporaria Linnaeus, 1758 as our target species and an improved eDNA protocol to: (i) investigate differences in species detection between three developmental stages in various freshwater environments; and (ii) study the diversity of mitochondrial DNA (mtDNA) haplotypes detected in eDNA (water) samples, by amplifying a specific fragment of the COI gene (331 base pairs, bp) commonly used as a barcode. Our protocol proved to be a reliable tool for monitoring population genetic diversity of this species, and could be a valuable addition to amphibian conservation and wetland management.


Assuntos
DNA Ambiental , Animais , Lagoas , Biodiversidade , Anuros , DNA Mitocondrial/genética , Variação Genética , Monitoramento Ambiental/métodos , Código de Barras de DNA Taxonômico/métodos
5.
Microorganisms ; 10(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35456763

RESUMO

Among the Apicomplexa parasites, Hepatozoon spp. have been mainly studied in domestic animals and peri-urban areas. The epidemiology of Hepatozoon spp. is poorly investigated in natural systems and wild hosts because of their scarce veterinary and economic relevance. For most habitats, the occurrence of these parasites is unknown, despite their high ecosystemic role. To fill this gap for alpine small mammals, we applied molecular PCR-based methods and sequencing to determine the Hepatozoon spp. in 830 ear samples from 11 small mammal species (i.e., Apodemus, Myodes, Chionomys, Microtus, Crocidura and Sorex genera) live-trapped during a cross-sectional study along an altitudinal gradient in the North-Eastern Italian Alps. We detected Hepatozoon spp. with an overall prevalence of 35.9%. Two species ranging from 500 m a.s.l. to 2500 m a.s.l. were the most infected: My. glareolus, followed by Apodemus spp. Additionally, we detected the parasite for the first time in another alpine species: C. nivalis at 2000-2500 m a.s.l. Our findings suggest that several rodent species maintain Hepatozoon spp. along the alpine altitudinal gradient of habitats. The transmission pathway of this group of parasites and their role within the alpine mammal community need further investigation, especially in consideration of the rapidly occurring environmental and climatic changes.

6.
Sci Rep ; 11(1): 18226, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521917

RESUMO

Monitoring biodiversity is of increasing importance in natural ecosystems. Metabarcoding can be used as a powerful molecular tool to complement traditional biodiversity monitoring, as total environmental DNA can be analyzed from complex samples containing DNA of different origin. The aim of this research was to demonstrate the potential of pollen DNA metabarcoding using the chloroplast trnL partial gene sequencing to characterize plant biodiversity. Collecting airborne biological particles with gravimetric Tauber traps in four Natura 2000 habitats within the Natural Park of Paneveggio Pale di San Martino (Italian Alps), at three-time intervals in 1 year, metabarcoding identified 68 taxa belonging to 32 local plant families. Metabarcoding could identify with finer taxonomic resolution almost all non-rare families found by conventional light microscopy concurrently applied. However, compared to microscopy quantitative results, Poaceae, Betulaceae, and Oleaceae were found to contribute to a lesser extent to the plant biodiversity and Pinaceae were more represented. Temporal changes detected by metabarcoding matched the features of each pollen season, as defined by aerobiological studies running in parallel, and spatial heterogeneity was revealed between sites. Our results showcase that pollen metabarcoding is a promising approach in detecting plant species composition which could provide support to continuous monitoring required in Natura 2000 habitats for biodiversity conservation.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Magnoliopsida/classificação , Metagenômica/métodos , Pólen/genética , Genoma de Planta , Magnoliopsida/genética , Magnoliopsida/fisiologia , Metagenoma
7.
Sci Rep ; 11(1): 1208, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441696

RESUMO

Current biodiversity loss is a major concern and thus biodiversity assessment of modern ecosystems is compelling and needs to be contextualized on a longer timescale. High Throughput Sequencing (HTS) is progressively becoming a major source of data on biodiversity time series. In this multi proxy study, we tested, for the first time, the potential of HTS to estimate plant biodiversity archived in the surface layers of a temperate alpine glacier, amplifying the trnL barcode for vascular plants from eDNA of firn samples. A 573 cm long core was drilled by the Adamello glacier and cut into sections; produced samples were analyzed for physical properties, stable isotope ratio, and plant biodiversity by eDNA metabarcoding and conventional light microscopy analysis. Results highlighted the presence of pollen and plant remains within the distinct layers of snow, firn and ice. While stable isotope ratio showed a scarcely informative pattern, DNA metabarcoding described distinct plant species composition among the different samples, with a broad taxonomic representation of the biodiversity of the catchment area and a high-ranking resolution. New knowledge on climate and plant biodiversity changes of large catchment areas can be obtained by this novel approach, relevant for future estimates of climate change effects.


Assuntos
DNA Ambiental/genética , DNA de Plantas/genética , Plantas/genética , Biodiversidade , Mudança Climática , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Monitoramento Ambiental/métodos , Camada de Gelo , Itália , Projetos Piloto
8.
Vector Borne Zoonotic Dis ; 20(9): 692-702, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32487013

RESUMO

Ljungan virus (LV), which belongs to the Parechovirus genus in the Picornaviridae family, was first isolated from bank voles (Myodes glareolus) in Sweden in 1998 and proposed as a zoonotic agent. To improve knowledge of the host association and geographical distribution of LV, tissues from 1685 animals belonging to multiple rodent and insectivore species from 12 European countries were screened for LV-RNA using reverse transcriptase (RT)-PCR. In addition, we investigated how the prevalence of LV-RNA in bank voles is associated with various intrinsic and extrinsic factors. We show that LV is widespread geographically, having been detected in at least one host species in nine European countries. Twelve out of 21 species screened were LV-RNA PCR positive, including, for the first time, the red vole (Myodes rutilus) and the root or tundra vole (Alexandromys formerly Microtus oeconomus), as well as in insectivores, including the bicolored white-toothed shrew (Crocidura leucodon) and the Valais shrew (Sorex antinorii). Results indicated that bank voles are the main rodent host for this virus (overall RT-PCR prevalence: 15.2%). Linear modeling of intrinsic and extrinsic factors that could impact LV prevalence showed a concave-down relationship between body mass and LV occurrence, so that subadults had the highest LV positivity, but LV in older animals was less prevalent. Also, LV prevalence was higher in autumn and lower in spring, and the amount of precipitation recorded during the 6 months preceding the trapping date was negatively correlated with the presence of the virus. Phylogenetic analysis on the 185 base pair species-specific sequence of the 5' untranslated region identified high genetic diversity (46.5%) between 80 haplotypes, although no geographical or host-specific patterns of diversity were detected.


Assuntos
Parechovirus/isolamento & purificação , Infecções por Picornaviridae/veterinária , Animais , Peso Corporal , Eulipotyphla , Europa (Continente)/epidemiologia , Parechovirus/classificação , Parechovirus/genética , Filogenia , Infecções por Picornaviridae/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Roedores , Estações do Ano
9.
Ticks Tick Borne Dis ; 9(2): 164-170, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28890111

RESUMO

The aim of this study was to determine the occurrence of Anaplasma phagocytophilum, Rickettsia spp., Babesia spp., and Candidatus Neoehrlichia mikurensis in Ixodes spp. ticks removed from wildlife, domestic animals and humans in the Province of Trento (northern Italy) in order to better understand their ecology and provide public health professionals with an updated list of pathogens which should be considered during their diagnostic procedures after a tick bite. During 2011-2012, 848 feeding ticks at all life stages (adults, nymphs and larvae) from various hosts (wild ungulates, birds and rodents; domestic sheep, dogs and humans) were collected. The highest prevalences of A. phagocytophilum and Rickettsia spp. were detected in adult and nymphal tick stages feeding on wild ungulates (11.4% prevalence for both pathogens), while the Babesia spp. prevailed in nymphal and larval ticks feeding on wild birds (7.7%). A wide spectrum of tick-borne agents was present in larval ticks: those detached from wild ungulates were positive for A. phagocytophilum, B. venatorum, R. helvetica, R. monacensis and R. raoultii, while those removed from wild rodents were positive for B. venatorum, R. helvetica, R. monacensis and Ca. N. mikurensis, and ticks from wild birds carried A. phagocytophilum, B. venatorum, B. capreoli and R. helvetica. This study provides evidence of circulation of five tick-borne pathogens not reported in this region before, specifically R. raoultii, R. monacensis, B. venatorum, B. capreoli and B. microti. Furthermore, it discusses the epidemiological role of the animal species from which the ticks were collected highlighting the needs for more experimental studies especially for those pathogens where transovarial transmission in ticks has been demonstrated.


Assuntos
Infecções por Anaplasmataceae , Babesiose/epidemiologia , Reservatórios de Doenças/veterinária , Ixodes , Infecções por Rickettsia , Doenças Transmitidas por Carrapatos , Anaplasmataceae/isolamento & purificação , Infecções por Anaplasmataceae/epidemiologia , Infecções por Anaplasmataceae/microbiologia , Infecções por Anaplasmataceae/veterinária , Animais , Animais Domésticos , Animais Selvagens , Babesia/isolamento & purificação , Babesiose/parasitologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/parasitologia , Humanos , Itália/epidemiologia , Ixodes/crescimento & desenvolvimento , Ixodes/microbiologia , Ixodes/parasitologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/parasitologia , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/parasitologia , Prevalência , Rickettsia/isolamento & purificação , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia , Doenças Transmitidas por Carrapatos/veterinária
11.
Proc Natl Acad Sci U S A ; 114(45): E9589-E9597, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078308

RESUMO

About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles (i) can be an important driver of divergence in isolation, (ii) can be tolerated when balancing selection prevents random loss of variation at important genes, and (iii) is followed by or results directly in favorable behavioral changes.


Assuntos
Variação Genética/genética , Genoma Mitocondrial/genética , Ursidae/genética , Agressão/fisiologia , Alelos , Aminoácidos/genética , Animais , Genômica/métodos , Filogenia , Densidade Demográfica , Cidade de Roma , Análise de Sequência de DNA
12.
PLoS One ; 12(1): e0170507, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28114306

RESUMO

The rock partridge, Alectoris graeca, is a polytypic species declining in Italy mostly due to anthropogenic causes, including the massive releases of the closely related allochthonous chukar partridge Alectoris chukar which produced the formation of hybrids. Molecular approaches are fundamental for the identification of evolutionary units in the perspective of conservation and management, and to correctly select individuals to be used in restocking campaigns. We analyzed a Cytochrome oxidase I (COI) fragment of contemporary and historical A. graeca and A. chukar samples, using duplicated analyses to confirm results and nuclear DNA microsatellites to exclude possible sample cross-contamination. In two contemporary specimens of A. graeca, collected from an anthropogenic hybrid zone, we found evidence of the presence of mtDNA heteroplasmy possibly associated to paternal leakage and suggesting hybridization with captive-bred exotic A. chukar. These results underline significant limitations in the reliability of mtDNA barcoding-based species identification and could have relevant evolutionary and ecological implications that should be accounted for when interpreting data aimed to support conservation actions.


Assuntos
DNA Mitocondrial/genética , Galliformes/genética , Animais , Hibridização Genética , Filogenia , Especificidade da Espécie
13.
Parasit Vectors ; 5: 223, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23043958

RESUMO

BACKGROUND: During recent years, numerous novel 'insect flaviviruses' have been discovered in natural mosquito populations. In a previous study we described the presence of flavivirus DNA sequences integrated in Aedes albopictus (Asian tiger mosquito) populations from Northern Italy in 2007. METHODS: During 2008 we collected and tested Aedes females for flavivirus presence and developed phylogenetic analysis, virus isolation, electron microscopy studies and RNAse treatments. RESULTS: We detected a high prevalence of flavivirus in Ae. albopictus (77.5%). The phylogenetic analysis identified the insect flavivirus sequences as Aedes flavivirus (AEFV) recently described in Japan, and that may have been introduced in Italy travelling with the tiger mosquito. Some of these pools grew in C6/36 cells, producing cytopathic effects, and the RNase treatment results showed the presence of the detected sequences in RNA forms. Furthermore, we detected a new insect flavivirus in one pool of Aedes cinereus/geminus mosquitoes. Phylogenetic analysis of this virus shows that it forms a distinct cluster within the clade of insect flavivirus. CONCLUSIONS: This is the first study to report a high prevalence, to describe the seasonal activity and an isolation of the insect flavivirus Aedes flavivirus in Europe. Moreover we describe the detection of a new insect flavivirus detected from Ae. cinereus mosquitoes from Italy. These flavivirus may be common, ubiquitous and diverse in nature and we discuss the implications of the insect flavivirus group in virus evolution and transmission.


Assuntos
Aedes/virologia , Flavivirus/classificação , Animais , Análise por Conglomerados , Feminino , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/ultraestrutura , Itália , Microscopia Eletrônica , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Vírion/ultraestrutura , Cultura de Vírus
14.
PLoS One ; 3(7): e2700, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18628960

RESUMO

BACKGROUND: DNA sequences from ancient specimens may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. METHODOLOGY/PRINCIPAL FINDINGS: We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. CONCLUSIONS/SIGNIFICANCE: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans.


Assuntos
Evolução Biológica , Hominidae/genética , Animais , Sequência de Bases , Primers do DNA , DNA Mitocondrial/genética , Europa (Continente) , Humanos , Itália , Dados de Sequência Molecular , Paleontologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...