Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Kathmandu Univ Med J (KUMJ) ; 22(86): 144-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328101

RESUMO

Background Kidney disease includes diseases of the glomerulus, tubular disorders, and conditions associated with hematuria or proteinuria. Urinalysis can be a reliable and easy tool to screen. Objective In this study, we aim to study the prevalence of renal and urinary tract diseases among the pediatric population in a tertiary hospital in Nepal. Method A single-center retrospective cross-sectional study was conducted from 2022 to 2023 in the pediatric department. Information was obtained regarding clinicalepidemiological profile, associated condition, investigations, diagnosis, and duration of hospital stay, management, and outcome. Result The prevalence of renal disease was 5.6%, with urinary tract infection being the most common diagnosis. Maximum cases presented between one and five years with a male-to-female ratio of 1.1:1 and 80.9% of the patients had new onset disease. The mean duration of hospital stay was six days. The mortality rate in renal diseases was 3.2%. Conclusion Renal diseases make up a significant portion of pediatric admissions. Renal diseases contribute to significant morbidity and mortality. A large number of cases of renal diseases are due to infective etiology hence they are preventable and curable. Renal disease in children presents with vague symptoms and signs. Routine screening of renal diseases is needed for early diagnosis and reduction in morbidity and mortality.


Assuntos
Países em Desenvolvimento , Nefropatias , Centros de Atenção Terciária , Doenças Urológicas , Humanos , Masculino , Feminino , Nepal/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Prevalência , Estudos Retrospectivos , Estudos Transversais , Pré-Escolar , Criança , Lactente , Nefropatias/epidemiologia , Nefropatias/diagnóstico , Doenças Urológicas/epidemiologia , Doenças Urológicas/diagnóstico , Adolescente , Tempo de Internação/estatística & dados numéricos , Infecções Urinárias/epidemiologia , Infecções Urinárias/diagnóstico
2.
Softw Impacts ; 212024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39345726

RESUMO

Understanding the function of sleep and its associated neural rhythms is an important goal in neuroscience. While many theoretical models of neural dynamics during sleep exist, few include the effects of neuromodulators on sleep oscillations and describe transitions between sleep and wake states or different sleep stages. Here, we started with a C++-based thalamocortical network model that describes characteristic thalamic and cortical oscillations specific to sleep. This model, which includes a biophysically realistic description of intrinsic and synaptic channels, allows for testing the effects of different neuromodulators, intrinsic cell properties, and synaptic connectivity on neural dynamics during sleep. We present a complete reimplementation of this previously-published sleep model in the standardized NEURON/Python framework, making it more accessible to the wider scientific community.

3.
ACS Appl Mater Interfaces ; 16(37): 49544-49555, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231379

RESUMO

Utilizing noble metal nanoparticles through novel technologies is a promising avenue for enhancing the performance of organic/inorganic photodetectors. This study investigates the performance enhancement of Formamidinium-based perovskite (Pe) photodetectors (PDs) through the incorporation of plasmonic silver nanoparticles (Ag NPs) arrays using a 2D printing technique. The incorporation of plasmonic Ag NPs leads to a major improvement in the performance of the planar PD device, which is attributed to increased light absorption, hot electron generation, and more efficient charge extraction and transport. The unique aspect of this study lies in the method of incorporating plasmonic NPs using a two-dimensional printing technology. This approach offers several advantages over traditional methods, including lower cost, nonvacuum operation, and compatibility with room temperature fabrication. The printed plasmon-enhanced optimized perovskite PD exhibits remarkable performance metrics, including a peak responsivity of 1.03 A/W at 5 V external bias, which is significantly high compared to the reported devices. Moreover, the PD demonstrates exceptional detectivity with a peak value of 3.7 × 1012 Jones at 5 V, highlighting its capability to detect ultralow light signals with high precision. The device can be reversibly switched between low and high conductance states, yielding a stable and repeatable Ilight/Idark ratio of 1.06 × 104. In addition, the integration of plasmonic nanoparticles imparts remarkable photovoltaic characteristics to the perovskite photodetector, enabling it to function as a self-biased device. The hybrid device demonstrates a peak responsivity of 15 mA/W, a high detectivity of 2.15 × 1011 Jones, and a significant on-off ratio of 2.23 × 103, all achieved at zero external bias. Overall, this study presents a significant advancement in the field of plasmon-enhanced Pe photodetection technology. By utilizing the benefits of printing technology to incorporate NPs, we have developed a high-performance PD that combines cost-effectiveness with exceptional performance. Thus, we believe that this study will pave the way for the development of a low-cost, high-performance plasmon-enhanced Pe-based PD.

4.
Imaging Neurosci (Camb) ; 2: 1-20, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39290632

RESUMO

Magnetoencephalography (MEG) is a non-invasive functional imaging technique for pre-surgical mapping. However, movement-related MEG functional mapping of primary motor cortex (M1) has been challenging in presurgical patients with brain lesions and sensorimotor dysfunction due to the large numbers of trials needed to obtain adequate signal to noise. Moreover, it is not fully understood how effective the brain communication is with the muscles at frequencies above the movement frequency and its harmonics. We developed a novel Electromyography (EMG)-projected MEG source imaging technique for localizing early-stage (-100 to 0 ms) M1 activity during ~l min recordings of left and right self-paced finger movements (~1 Hz). High-resolution MEG source images were obtained by projecting M1 activity towards the skin EMG signal without trial averaging. We studied delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and upper-gamma (60-90 Hz) bands in 13 healthy participants (26 datasets) and three presurgical patients with sensorimotor dysfunction. In healthy participants, EMG-projected MEG accurately localized M1 with high accuracy in delta (100.0%), theta (100.0%), and beta (76.9%) bands, but not alpha (34.6%) or gamma/upper-gamma (0.0%) bands. Except for delta, all other frequency bands were above the movement frequency and its harmonics. In three presurgical patients, M1 activity in the affected hemisphere was also accurately localized, despite highly irregular EMG movement patterns in one patient. Altogether, our EMG-projected MEG imaging approach is highly accurate and feasible for M1 mapping in presurgical patients. The results also provide insight into movement-related brain-muscle coupling above the movement frequency and its harmonics.

5.
ACS Appl Mater Interfaces ; 16(32): 42007-42020, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088748

RESUMO

The distinctive properties of 2D MXenes have garnered significant interest across various fields, including wastewater treatment and photo/electro-catalysis. The integration of inexpensive semiconductor nanostructures with 2D MXenes offers a promising strategy for applications such as wastewater treatment and photoelectrochemical hydrogen production. In this study, we employed an in situ hydrothermal method to immobilize 1D Bi2S3 nanorods and self-reduced metallic bismuth nanoparticles (Bi NPs) onto Ti3C2Tx MXene nanosheets, resulting in the formation of a Bi/Bi2S3/Ti3C2Tx (0D/1D/2D) composite catalyst, which demonstrates an outstanding efficacy in both the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and photoelectrochemical hydrogen production. Remarkably, a 4-NP reduction efficiency of 100% was achieved only in 4 min with a reduction rate of 1.14 min-1, which is outstanding, and it is ∼3.8 times faster than pristine Bi2S3 nanorods (0.3 min-1). Furthermore, the photoelectrochemical assessment reveals that the Bi/Bi2S3/Ti3C2Tx catalyst displays remarkable hydrogen evolution reaction (HER) efficiency in an alkaline electrolyte. It exhibits a significantly lower overpotential and Tafel slope of 73 mV and 84 mV/dec, respectively, compared to pristine Bi2S3 nanorods, which are found to be 129 mV and 145 mV/dec under light illumination. The superior reduction performance of 4-NP and charge transfer mechanism is further investigated through density functional theory (DFT) calculations, alongside validation using various microscopic and spectroscopic techniques. Interestingly, the DFT analysis revealed modifications in the partial density of states of Bi2S3 within the band gap region due to the successful anchoring of Ti3C2Tx nanosheets and metallic Bi NPs, facilitating efficient charge transport and separation across the local junctions. Ultraviolet photoelectron spectroscopy provided insights into band alignment and interfacial charge transfer across the Bi/Bi2S3/Ti3C2Tx junction on a microscopic scale. This work is significant for the development of MXene-based hybrid catalysts, and it provides a deeper understanding of the reduction mechanism of organic pollutants and superior charge transport in the hybrid system for photoelectrochemical hydrogen production.

6.
PLoS Comput Biol ; 20(7): e1012245, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028760

RESUMO

Slow-wave sleep (SWS), characterized by slow oscillations (SOs, <1Hz) of alternating active and silent states in the thalamocortical network, is a primary brain state during Non-Rapid Eye Movement (NREM) sleep. In the last two decades, the traditional view of SWS as a global and uniform whole-brain state has been challenged by a growing body of evidence indicating that SO can be local and can coexist with wake-like activity. However, the mechanisms by which global and local SOs arise from micro-scale neuronal dynamics and network connectivity remain poorly understood. We developed a multi-scale, biophysically realistic human whole-brain thalamocortical network model capable of transitioning between the awake state and SWS, and we investigated the role of connectivity in the spatio-temporal dynamics of sleep SO. We found that the overall strength and a relative balance between long and short-range synaptic connections determined the network state. Importantly, for a range of synaptic strengths, the model demonstrated complex mixed SO states, where periods of synchronized global slow-wave activity were intermittent with the periods of asynchronous local slow-waves. An increase in the overall synaptic strength led to synchronized global SO, while a decrease in synaptic connectivity produced only local slow-waves that would not propagate beyond local areas. These results were compared to human data to validate probable models of biophysically realistic SO. The model producing mixed states provided the best match to the spatial coherence profile and the functional connectivity estimated from human subjects. These findings shed light on how the spatio-temporal properties of SO emerge from local and global cortical connectivity and provide a framework for further exploring the mechanisms and functions of SWS in health and disease.


Assuntos
Córtex Cerebral , Modelos Neurológicos , Rede Nervosa , Sinapses , Tálamo , Humanos , Tálamo/fisiologia , Rede Nervosa/fisiologia , Sinapses/fisiologia , Córtex Cerebral/fisiologia , Sono de Ondas Lentas/fisiologia , Encéfalo/fisiologia , Biologia Computacional , Sono/fisiologia
7.
PLoS Comput Biol ; 20(6): e1012099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843298

RESUMO

Brain activity during the resting state is widely used to examine brain organization, cognition and alterations in disease states. While it is known that neuromodulation and the state of alertness impact resting-state activity, neural mechanisms behind such modulation of resting-state activity are unknown. In this work, we used a computational model to demonstrate that change in excitability and recurrent connections, due to cholinergic modulation, impacts resting-state activity. The results of such modulation in the model match closely with experimental work on direct cholinergic modulation of Default Mode Network (DMN) in rodents. We further extended our study to the human connectome derived from diffusion-weighted MRI. In human resting-state simulations, an increase in cholinergic input resulted in a brain-wide reduction of functional connectivity. Furthermore, selective cholinergic modulation of DMN closely captured experimentally observed transitions between the baseline resting state and states with suppressed DMN fluctuations associated with attention to external tasks. Our study thus provides insight into potential neural mechanisms for the effects of cholinergic neuromodulation on resting-state activity and its dynamics.


Assuntos
Encéfalo , Conectoma , Modelos Neurológicos , Descanso , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Descanso/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Biologia Computacional , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Simulação por Computador , Acetilcolina/metabolismo , Masculino , Adulto , Imageamento por Ressonância Magnética
8.
Mater Horiz ; 11(15): 3695-3705, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38770582

RESUMO

Conventional metallic electromagnetic interference (EMI) shields, as well as the emerging 2D material-based shields, meet the shielding effectiveness (SE) needs of most applications. However, their shielding performance is dominated by the reflection of incoming radiation due to their high electrical conductivity, which leads to secondary pollution. This problem is getting exacerbated with the proliferation of electronics and communication networks in modern society. Thus, EMI shields that function dominantly by the absorption of incoming radiation are highly desirable. Such shields would be characterized by a green index, which is the ratio of absorbance over reflectance, close to or greater than one. For nonmagnetic materials, the best way to reduce the undesirable large impedance mismatch is to reduce the effective permittivity of the shield material. Here, we present a new EMI shield with a semiconductor Bi2S3 filler in a conducting PEDOT:PSS polymer matrix, instead of the conventional conductive fillers, to reduce the effective permittivity and demonstrate that even a light loading of only 10% Bi2S3 provides high SE of over 40 dB with a green index value of 0.75. Increasing the filler content to 15 wt% increases the green index close to unity while dropping the SE to 30 dB. The shielding mechanism is explained through electromagnetic parameter measurements and supplemented by density functional theory calculations. This work lays the foundation for the advancement of lightweight and ultrathin green EMI shields with minimum secondary pollution.

9.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38617301

RESUMO

Slow-wave sleep (SWS), characterized by slow oscillations (SO, <1Hz) of alternating active and silent states in the thalamocortical network, is a primary brain state during Non-Rapid Eye Movement (NREM) sleep. In the last two decades, the traditional view of SWS as a global and uniform whole-brain state has been challenged by a growing body of evidence indicating that SO can be local and can coexist with wake-like activity. However, the understanding of how global and local SO emerges from micro-scale neuron dynamics and network connectivity remains unclear. We developed a multi-scale, biophysically realistic human whole-brain thalamocortical network model capable of transitioning between the awake state and slow-wave sleep, and we investigated the role of connectivity in the spatio-temporal dynamics of sleep SO. We found that the overall strength and a relative balance between long and short-range synaptic connections determined the network state. Importantly, for a range of synaptic strengths, the model demonstrated complex mixed SO states, where periods of synchronized global slow-wave activity were intermittent with the periods of asynchronous local slow-waves. Increase of the overall synaptic strength led to synchronized global SO, while decrease of synaptic connectivity produced only local slow-waves that would not propagate beyond local area. These results were compared to human data to validate probable models of biophysically realistic SO. The model producing mixed states provided the best match to the spatial coherence profile and the functional connectivity estimated from human subjects. These findings shed light on how the spatio-temporal properties of SO emerge from local and global cortical connectivity and provide a framework for further exploring the mechanisms and functions of SWS in health and disease.

10.
Nanoscale ; 16(17): 8583-8596, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602125

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are excellent candidates for high-performance optoelectronics due to their high carrier mobility, air stability and strong optical absorption. However, photodetectors made with monolayer TMDs often exhibit a high dark current, and thus, there is a scope for further improvement. Herein, we developed a 2D bilayer tungsten disulfide (WS2) based photodetector (PD) with asymmetric contacts that exhibits an exceptionally low dark current and high specific detectivity. High-quality and large-area monolayer and bilayer WS2 flakes were synthesized using a thermal chemical vapor deposition system. Compared to conventional symmetric contact electrodes, utilizing metal electrodes with higher and lower work functions relative to bilayer WS2 aids in achieving asymmetric lateral doping in the WS2 flakes. This doping asymmetry was confirmed through the photoluminescence spectral profile and Raman mapping analysis. With the asymmetric contacts on bilayer WS2, we find evidence of selective doping of electrons and holes near the Ti and Au contacts, respectively, while the WS2 region away from the contacts remains intrinsic. When compared with the symmetric contact case, the dark current in the WS2 PD with asymmetric (Au, Ti) contact decreases by an order of magnitude under reverse bias with a concomitant increase in the photocurrent, resulting in an improved on/off ratio of ∼105 and overall improved device performance under identical illumination conditions. We explained this improved performance based on the energy band alignment showing a unidirectional charge flow under light illumination. Our results indicate that the planar device structure and compatibility with current nanofabrication technologies can facilitate its integration into advanced chips for futuristic low-power optoelectronic and nanophotonic applications.

11.
Nanoscale Adv ; 6(8): 2136-2148, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633034

RESUMO

Integrating low-dimensional graphene oxide (GO) with conventional Si technology offers innovative strategies for developing ultrafast wideband photodetectors. In this study, we synthesized GO and explored its potential application in broadband photodetection alongside silicon heterostructures. The as-synthesized GO contains various oxygen functional groups, as evidenced by X-ray photoelectron and Fourier transform infrared spectroscopy. These functional groups contribute to increased photo absorption, enhancing photodetection performance. The systematic reduction of these functional groups from the GO surface via thermal annealing decreases photo absorption and consequently lowers the photocurrent. This reduction diminishes photo absorption and amplifies the dark current by approximately 25 times, from 20 nA to 496 nA. This dark current increase is attributed to the electron mobility following the reduction of functional groups. However, attaching plasmonic gold nanoparticles (Au NPs) to the GO surface enhances UV-Vis absorption in the visible region, enabling broadband detection. The even distribution of attached Au NPs on the GO surface is confirmed through field emission transmission electron microscopy. While thermal annealing of GO diminishes the responsivity from 4.6 A W-1 to 3.0 A W-1, the attachment of Au NPs augments the responsivity by more than two-fold, reaching 10.0 A W-1. Thus, it highlights the importance of rich oxygen functional groups in GO and the attachment of Au NPs to achieve more efficient photo-sensing properties.

12.
ACS Appl Mater Interfaces ; 16(7): 9039-9050, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324453

RESUMO

The development of high-performance and low-cost photodetectors (PDs) capable of detecting a broad range of wavelengths, from ultraviolet (UV) to near-infrared (NIR), is crucial for applications in sensing, imaging, and communication systems. This work presents a novel approach for printing a broadband PD based on a heterostructure of two-dimensional (2D) molybdenum diselenide (MoSe2) and gallium arsenide (GaAs). The fabrication process involves a precise technique to print MoSe2 nanoflower (NF) ink onto a prepatterned GaAs substrate. The resulting heterostructure exhibits unique properties, leveraging the exceptional electronic and optical characteristics of both GaAs and 2D MoSe2. The fabricated PD achieves an astounding on-off ratio of ∼105 at 5 V bias while demonstrating an exceptional on-off ratio of ∼104 at 0 V. The depletion region between GaAs and MoSe2 facilitates efficient charge generation and separation and collection of photogenerated carriers. This significantly improves the performance of the PD, resulting in a notably high responsivity across the spectrum. The peak responsivity of the device is 5.25 A/W at 5 V bias under 808 nm laser excitation, which is more than an order of magnitude higher than that of any commercial NIR PDs. Furthermore, the device demonstrates an exceptional responsivity of 0.36 A/W under an external bias of 0 V. The printing technology used here offers several advantages including simplicity, scalability, and compatibility with large-scale production. Additionally, it enables precise control over the placement and integration of the MoSe2 NF onto the GaAs substrate, ensuring uniformity and reliability in device performance. The exceptional responsivity across a broad spectral range (360-1550 nm) and the success of the printing technique make our MoSe2/GaAs heterostructure PD promising for future low-cost and efficient optoelectronic devices.

13.
Nanoscale ; 16(1): 309-321, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38059742

RESUMO

Oxygen vacancy engineering in metal oxide-based semiconductors has emerged as an important area of research for sensing applications, such as Surface-enhanced Raman scattering (SERS), gas sensing, etc. It has the potential to replace high-cost and unstable noble metal-based substrates in the near future. However, improving the SERS enhancement factor in semiconductor-based substrates remains a challenge. In the present study, we demonstrate that oxygen vacancy engineering in Niobium pentoxide (Nb2O5) enables ultrahigh SERS sensitivity. Oxygen vacancies were induced and manipulated in the Nb2O5 nanoparticles via a facile high-energy ball milling method and post-growth oxygen annealing. A high enhancement factor (EF) of 5.15 × 107 was obtained for the Methylene Blue (MeB) molecule on the oxygen-deficient substrate with the lowest detection limit of 10-8 M, which is 2 orders of magnitude lower than the pristine substrate. Through a careful analysis of the experimental data and theoretical calculations, we investigated the underlying mechanism behind the high EF in SERS and showed that the SERS performance is directly proportional to the oxygen vacancy concentration in the Nb2O5 nanoparticles. Density functional theory (DFT) calculation suggests a strong coupling of the vibronic states and an increased charge transfer (CT) efficiency in the Nb2O5-MeB complex mediated through the vacancy-induced trap states in the defective Nb2O5 structure. Finite element method (FEM)-based simulations revealed a field enhancement factor of ∼4.17 × 102 that contributed to the SERS EF, while the remaining is contributed to the oxygen vacancy-mediated charge transfer, i.e., a factor of ∼1.23 × 105 is due to the high CT efficiency, the highest among the reported values. We believe that these findings offer valuable insights into the fabrication of defect-tailored cost-effective semiconductor-based SERS substrates for ensuing applications, such as trace dye detection.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38083499

RESUMO

The slow oscillation (SO) observed during deep sleep is known to facilitate memory consolidation. However, the impact of age-related changes in sleep electroencephalography (EEG) oscillations and memory remains unknown. In this study, we aimed to investigate the contribution of age-related changes in sleep SO and its role in memory decline by combining EEG recordings and computational modeling. Based on the detected SO events, we found that older adults exhibit lower SO density, lower SO frequency, and longer Up and Down state durations during N3 sleep compared to young and middle-aged groups. Using a biophysically detailed thalamocortical network model, we simulated the "aged" brain as a partial loss of synaptic connections between neurons in the cortex. Our simulations showed that the changes in sleep SO properties in the "aged" brain, similar to those observed in older adults, resulting in impaired memory consolidation. Overall, this study provides mechanistic insights into how age-related changes modulate sleep SOs and memory decline.Clinical Relevance- This study contributes towards finding feasible biomarkers and target mechanism for designing therapy in older adults with memory deficits, such as Alzheimer's disease patients.


Assuntos
Eletroencefalografia , Sono , Pessoa de Meia-Idade , Humanos , Idoso , Sono/fisiologia , Encéfalo/fisiologia , Simulação por Computador , Transtornos da Memória
15.
J Mater Chem B ; 11(42): 10206-10217, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853818

RESUMO

Ultrafast and sensitive detection of Staphylococcus aureus (S. aureus), a harmful Gram-positive human pathogenic bacterium, by two-dimensional layered materials continues to be a challenge. Herein, we have studied the sensing of S. aureus using a tungsten disulfide (WS2) quantum dot (QD) and bismuth oxyselenide (Bi2O2Se) nanosheet (NS) hybrid through their unique optical functionalities. The WS2 QDs of a mean diameter of 2.5 nm were synthesized by liquid exfoliation. Due to the quantum confinement and functional groups, the WS2 QDs exhibit high fluorescence (FL) yield under UV excitation. The addition of Bi2O2Se NSs resulted in the adsorption of WS2 QDs on their surface, resulting in quenching of the FL emission due to nonfluorescent complex formation between the WS2 QDs and Bi2O2Se NSs. A specific sequencing single-standard DNA (ssDNA) aptamer, which identifies and explicitly binds with S. aureus, was attached to the defect sites of the WS2 QDs for selective detection. The thiol-modified ssDNA aptamers attach covalently to the WS2 QD defect sites, which was confirmed by Raman and X-ray photoelectron spectroscopy (XPS). The interaction of S. aureus with the aptamer functionalized WS2 QDs weakens the van der Waals interaction between the WS2 QDs and Bi2O2Se NSs, which results in the detachment of the WS2 QDs from the Bi2O2Se NS surface and restores the FL intensity of the WS2 QDs, thus allowing the efficient detection of S. aureus. Similar measurements with non-targeted bacteria show that the system is quite selective towards S. aureus. Our FL-based biosensor has a linear response in the range of 103-107 CFU mL-1 (colony formation unit mL-1) with a detection limit of 580 CFU mL-1. We have observed a fast response time of 15 minutes for sensing, which is superior to the previous reports. The proposed system was tested in human urine and can detect S. aureus in human urine samples selectively, proving its potential in real-life applications. The reported approach is versatile enough for sensing other biomolecules and metal ions by choosing suitable receptors.


Assuntos
Pontos Quânticos , Infecções Estafilocócicas , Humanos , Pontos Quânticos/química , Staphylococcus aureus , Transferência Ressonante de Energia de Fluorescência/métodos , Bactérias
16.
Nanoscale ; 15(33): 13809-13821, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37578279

RESUMO

Two-dimensional (2D) semiconducting material-based photodetectors (PDs) with high responsivity and fast photo-response are of great interest for various applications such as optical communications, biomedical imaging, security surveillance, environmental monitoring, etc. Additive manufacturing such as 2D printing is a potentially less cumbersome and cost-effective alternative to conventional microdevice fabrication processes used in the production of PDs. Here, we have fabricated a Si/WS2 quantum dot-based heterostructure PD with a very short electrode gap of 40 µm by a simple printing process. The printed p-Si/n-WS2 PD shows an excellent photo-to-dark current ratio of 5121 under 405 nm illumination (23.8 mW cm-2). The printed photodetector exhibits a peak responsivity of 126 A W-1 and a peak detectivity of 9.24 × 1012 Jones over a very broad wavelength range (300-1100 nm), which is much superior to commercial Si PDs. A high external quantum efficiency of 3.9 × 104% and an ultrafast photoresponse (7.8 µs rise time and 9.5 µs fall time) make the device an attractive candidate as an efficient photodetector. The origin of high-performance photodetection is traced to a nearly defect-free interface at the heterojunction, leading to highly efficient charge separation and high photocurrent. Finally, the 2D-printed device exhibits good photodetection even in self-powered conditions, which is very attractive.

17.
J Clin Oncol ; 41(24): 3965-3972, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37586209

RESUMO

PURPOSE: The Southwest Oncology Group (SWOG) coordinated an Intergroup study with the participation of Radiation Therapy Oncology Group (RTOG), and Eastern Cooperative Oncology Group (ECOG). This randomized phase III trial compared chemoradiotherapy versus radiotherapy alone in patients with nasopharyngeal cancers. MATERIALS AND METHODS: Radiotherapy was administered in both arms: 1.8- to 2.0-Gy/d fractions Monday to Friday for 35 to 39 fractions for a total dose of 70 Gy. The investigational arm received chemotherapy with cisplatin 100 mg/m2 on days 1, 22, and 43 during radiotherapy; postradiotherapy, chemotherapy with cisplatin 80 mg/m2 on day 1 and fluorouracil 1,000 mg/m2/d on days 1 to 4 was administered every 4 weeks for three courses. Patients were stratified by tumor stage, nodal stage, performance status, and histology. RESULTS: Of 193 patients registered, 147 (69 radiotherapy and 78 chemoradiotherapy) were eligible for primary analysis for survival and toxicity. The median progression-free survival (PFS) time was 15 months for eligible patients on the radiotherapy arm and was not reached for the chemo-radiotherapy group. The 3-year PFS rate was 24% versus 69%, respectively (P < .001). The median survival time was 34 months for the radiotherapy group and not reached for the chemo-radiotherapy group, and the 3-year survival rate was 47% versus 78%, respectively (P = .005). One hundred eighty-five patients were included in a secondary analysis for survival. The 3-year survival rate for patients randomized to radiotherapy was 46%, and for the chemoradiotherapy group was 76% (P < .001). CONCLUSION: We conclude that chemoradiotherapy is superior to radiotherapy alone for patients with advanced nasopharyngeal cancers with respect to PFS and overall survival.

18.
Nanoscale ; 15(30): 12612-12625, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37462457

RESUMO

Bismuth oxyselenide (Bi2O2Se) nanosheets, a new 2D non-van der Waals nanomaterial having unique semiconducting properties, could be favorable for various sensing applications. In the present report, a top-down chemical approach was adopted to synthesize ultrathin Bi2O2Se quantum dots (QDs) in an appropriate solution. The as-prepared 2D Bi2O2Se QDs with an average size of ∼3 nm, exhibiting strong visible fluorescence, were utilized for heavy-metal ion detection with high selectivity. The QDs show a high optical band gap and a reasonably high fluorescence quantum yield (∼4%) in the green region without any functionalization. A series of heavy metal ions were detected using these QDs. The as-prepared QDs exhibit selective detection of Fe3+ over a wide dynamic range with a high quenching ratio and a low detection limit (<0.5 µM). The mechanism of visible fluorescence and Fe3+ ion-induced quenching was investigated in detail based on a model involving adsorption and charge transfer. Density functional theory (DFT) first principles calculations show that fluorescence quenching occurred selectively due to the efficient trapping of electrons in the bandgap states created by the Fe atoms. This work presents a sustainable and scalable method to synthesize 2D Bi2O2Se QDs for heavy metal ion sensing over a wide dynamic range and these 2D QDs could find potential uses in gas sensors, biosensors and optoelectronics.

19.
medRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425691

RESUMO

Magnetoencephalography (MEG) is a non-invasive functional imaging technique for pre-surgical mapping. However, movement-related MEG functional mapping of primary motor cortex (M1) has been challenging in presurgical patients with brain lesions and sensorimotor dysfunction due to the large numbers of trails needed to obtain adequate signal to noise. Moreover, it is not fully understood how effective the brain communication is with the muscles at frequencies above the movement frequency and its harmonics. We developed a novel Electromyography (EMG)-projected MEG source imaging technique for localizing M1 during ~1 minute recordings of left and right self-paced finger movements (~1 Hz). High-resolution MEG source images were obtained by projecting M1 activity towards the skin EMG signal without trial averaging. We studied delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-90 Hz) bands in 13 healthy participants (26 datasets) and two presurgical patients with sensorimotor dysfunction. In healthy participants, EMG-projected MEG accurately localized M1 with high accuracy in delta (100.0%), theta (100.0%), and beta (76.9%) bands, but not alpha (34.6%) and gamma (0.0%) bands. Except for delta, all other frequency bands were above the movement frequency and its harmonics. In both presurgical patients, M1 activity in the affected hemisphere was also accurately localized, despite highly irregular EMG movement patterns in one patient. Altogether, our EMG-projected MEG imaging approach is highly accurate and feasible for M1 mapping in presurgical patients. The results also provide insight into movement related brain-muscle coupling above the movement frequency and its harmonics.

20.
Nanoscale ; 15(26): 11222-11236, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37345515

RESUMO

The appealing success of non-van der Waals (non-VdW) two-dimensional (2D) bismuth oxyselenide (Bi2O2Se) crystals in optoelectronics provides an exciting avenue to investigate their fundamental physical properties. To date, the majority of efforts have focused on understanding the properties of 2D Bi2O2Se, usually grown on a mica substrate. However, a gap exists in realizing the origin of photoluminescence (PL) of new age non-VdW Bi2O2Se at visible and near-infrared (NIR) wavelengths and the effect of growth substrates on the structure and optical properties. Herein, we report that the formation of multiple excitons in momentum valleys is responsible for broadband absorption and visible PL from a few layer thick 2D Bi2O2Se. The effect of growth substrates on the structure and optical properties is investigated in detail. Our studies unfold that the growth substrates (mica, sapphire, quartz, SiO2, glass) introduce strain/doping in chemical vapor deposition (CVD)-grown Bi2O2Se crystals, and consequently, the morphology, lattice constant, absorption coefficient, optical bandgap, refractive index, and PL properties are modulated. In addition, the possible direct/indirect multiple exciton formation at the valence band to the conduction band at different symmetry points of Bi2O2Se is analyzed from experimental data on different growth substrates and corroborated with the density functional theory (DFT) calculation of the electronic band structure. Furthermore, temperature-dependent photo-carrier dynamics discloses an A/Γ-exciton activation energy of 209.6 meV in Bi2O2Se. These findings are significant for the futuristic optoelectronic applications of Bi2O2Se and the choice of growth substrates on directly fabricated nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...