Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; 34(45): e2201864, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35925610

RESUMO

Requirements and recent advances in research on organic neuroelectronics are outlined herein. Neuroelectronics such as neural interfaces and neuroprosthetics provide a promising approach to diagnose and treat neurological diseases. However, the current neural interfaces are rigid and not biocompatible, so they induce an immune response and deterioration of neural signal transmission. Organic materials are promising candidates for neural interfaces, due to their mechanical softness, excellent electrochemical properties, and biocompatibility. Also, organic nervetronics, which mimics functional properties of the biological nerve system, is being developed to overcome the limitations of the complex and energy-consuming conventional neuroprosthetics that limit long-term implantation and daily-life usage. Examples of organic materials for neural interfaces and neural signal recordings are reviewed, recent advances of organic nervetronics that use organic artificial synapses are highlighted, and then further requirements for neuroprosthetics are discussed. Finally, the future challenges that must be overcome to achieve ideal organic neuroelectronics for next-generation neuroprosthetics are discussed.


Assuntos
Sinapses , Sinapses/fisiologia
3.
Adv Mater ; 34(31): e2203040, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35697021

RESUMO

Intrinsically stretchable organic light-emitting diodes (ISOLEDs) are becoming essential components of wearable electronics. However, the efficiencies of ISOLEDs have been highly inferior compared with their rigid counterparts, which is due to the lack of ideal stretchable electrode materials that can overcome the poor charge injection at 1D metallic nanowire/organic interfaces. Herein, highly efficient ISOLEDs that use graphene-based 2D-contact stretchable electrodes (TCSEs) that incorporate a graphene layer on top of embedded metallic nanowires are demonstrated. The graphene layer modifies the work function, promotes charge spreading, and impedes inward diffusion of oxygen and moisture. The work function (WF) of 3.57 eV is achieved by forming a strong interfacial dipole after deposition of a newly designed conjugated polyelectrolyte with crown ether and anionic sulfonate groups on TCSE; this is the lowest value ever reported among ISOLEDs, which overcomes the existing problem of very poor electron injection in ISOLEDs. Subsequent pressure-controlled lamination yields a highly efficient fluorescent ISOLED with an unprecedently high current efficiency of 20.3 cd A-1 , which even exceeds that of an otherwise-identical rigid counterpart. Lastly, a 3 inch five-by-five passive matrix ISOLED is demonstrated using convex stretching. This work can provide a rational protocol for designing intrinsically stretchable high-efficiency optoelectronic devices with favorable interfacial electronic structures.

4.
Adv Mater ; 32(15): e1903558, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31559670

RESUMO

Flexible neuromorphic electronics that emulate biological neuronal systems constitute a promising candidate for next-generation wearable computing, soft robotics, and neuroprosthetics. For realization, with the achievement of simple synaptic behaviors in a single device, the construction of artificial synapses with various functions of sensing and responding and integrated systems to mimic complicated computing, sensing, and responding in biological systems is a prerequisite. Artificial synapses that have learning ability can perceive and react to events in the real world; these abilities expand the neuromorphic applications toward health monitoring and cybernetic devices in the future Internet of Things. To demonstrate the flexible neuromorphic systems successfully, it is essential to develop artificial synapses and nerves replicating the functionalities of the biological counterparts and satisfying the requirements for constructing the elements and the integrated systems such as flexibility, low power consumption, high-density integration, and biocompatibility. Here, the progress of flexible neuromorphic electronics is addressed, from basic backgrounds including synaptic characteristics, device structures, and mechanisms of artificial synapses and nerves, to applications for computing, soft robotics, and neuroprosthetics. Finally, future research directions toward wearable artificial neuromorphic systems are suggested for this emerging area.


Assuntos
Biomimética/métodos , Eletrônica , Robótica , Órgãos Artificiais , Biomimética/instrumentação , Redes Neurais de Computação , Plasticidade Neuronal , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...