Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400430, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818652

RESUMO

BCL-2, a member of the BCL-2 protein family, is an antiapoptotic factor that regulates the intrinsic pathway of apoptosis. Due to its aberrant activity, it is frequently implicated in haematopoietic cancers and represents an attractive target for the development of therapeutics that antagonize its activity. A selective BCL-2 inhibitor, venetoclax, was approved for treating chronic lymphocytic leukaemia, acute myeloid leukemia, and other hematologic malignancies, validating BCL-2 as an anticancer target. Since then, alternative therapeutic approaches to modulate the activity of BCL-2 have been explored, such as antibody-drug conjugates and proteolysis-targeting chimeras. Despite numerous research groups focusing on developing degraders of BCL-2 family member proteins, selective BCL-2 PROTACs remain elusive, as disclosed compounds only show dual BCL-xL/BCL-2 degradation. Herein, we report our efforts to develop BCL-2 degraders by incorporating two BCL-2 binding moieties into chimeric compounds that aim to hijack one of three E3 ligases: CRBN, VHL, and IAPs. Even though our project did not result in obtaining a potent and selective BCL-2 PROTAC, our research will aid in understanding the narrow chemical space of BCL-2 degraders.

2.
J Med Chem ; 67(4): 3004-3017, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38301029

RESUMO

NOD1 and NOD2 are members of the pattern recognition receptors involved in the innate immune response. Overactivation of NOD1 is implicated in inflammatory disorders, multiple sclerosis, and cancer cell metastases. NOD1 antagonists would represent valuable pharmacological tools to gain further insight into protein roles, potentially leading to new therapeutic strategies. We herein report the expansion of the chemical space of NOD1 antagonists via a multicomponent synthetic approach affording a novel chemotype, namely, 2,3-diaminoindoles. These efforts resulted in compound 37, endowed with low micromolar affinity toward NOD1. Importantly, a proof-of-evidence of direct binding to NOD1 of Noditinib-1 and derivative 37 is provided here for the first time. Additionally, the combination of computational studies and NMR-based displacement assays enabled the characterization of the binding modality of 37 to NOD1, thus providing key unprecedented knowledge for the design of potent and selective NOD1 antagonists.


Assuntos
Imunidade Inata , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2/metabolismo , Indóis/química , Indóis/metabolismo
3.
Chemosphere ; 350: 141116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182088

RESUMO

The Aryl Hydrocarbon Receptor (AhR), a ligand-activated transcription factor, orchestrates responses to numerous structurally diverse endogenous and exogenous ligands. In addition to binding various xenobiotics, AhR also recognizes endocrine disruptors, particularly those featuring chlorinated or brominated aromatic structures. There is limited data available on the impact of common household and personal care product ingredients let alone their halogenated transformation products. Herein we bridge this knowledge gap by preparing a library of chlorinated and brominated parabens, bisphenols, UV filters, and nonylphenols. An evaluation of total of 125 compounds for agonistic and antagonistic activity on AhR unveiled a low micromolar agonist, Cl2BPAF with an EC50 of 13 µM. Moreover, our study identified several AhR antagonists, with BrBzP emerging as the most potent with an IC50 of 8.9 µM. To further investigate the functional implications of these compounds, we subjected the most potent agonist and antagonist to a functional assay involving cytokine secretion from peripheral blood mononuclear cells and compared their activity with the commercially available AhR agonist and antagonist. Cl2BPAF exhibited an overall immunosuppressive effect by reducing the secretion of proinflammatory cytokines, including IL-6, IFN-γ, and TNF-α, while BrBzP displayed opposite effects, leading to an increase of those cytokines. Notably, the immunomodulatory effects of Cl2BPAF surpassed those of ITE, a bona fide AhR agonist, while the impact of BrBzP exceeded that of CH223191, a bona fide AhR antagonist. In summary, our study underscores the potential influence of halogenated transformation products on the AhR pathway and, consequently, their role in shaping the immune responses.


Assuntos
Cosméticos , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Halogenação , Leucócitos Mononucleares , Citocinas/metabolismo
4.
Acta Pharm ; 73(3): 441-456, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708963

RESUMO

The constitutive proteasome and the immunoproteasome represent validated targets for pharmacological intervention in the context of various diseases, such as cancer, inflammation, and autoimmune diseases. The development of novel chemical scaffolds of non-peptidic nature, capable of inhibiting different catalytically active subunits of both isoforms, is a viable approach against these diseases. Such compounds are also useful as leads for the development of biochemical probes that enable the studies of the roles of both isoforms in various biological contexts. Here, we present a ligand-based computational design of (immuno)proteasome inhibitors, which resulted in the amino-substituted N-arylpiperidine-based compounds that can inhibit different subunits of the (immuno)proteasome in the low micromolar range. The compounds represent a useful starting point for further structure-activity relationship studies that will, hopefully, lead to non-peptidic compounds that could be used in pharmacological and biochemical studies of both proteasomes.


Assuntos
Doenças Autoimunes , Complexo de Endopeptidases do Proteassoma , Humanos , Inflamação , Relação Estrutura-Atividade
5.
J Control Release ; 355: 371-384, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738969

RESUMO

Biofilm-associated diseases such as periodontitis are widespread and challenging to treat which calls for new strategies for their effective management. Probiotics represent a promising approach for targeted treatment of dysbiosis in biofilm and modulation of host immune response. In this interdisciplinary study, nanofibers with two autochthonous Bacillus strains 27.3.Z and 25.2.M were developed. The strains were isolated from the oral microbiota of healthy individuals, and their genomes were sequenced and screened for genes associated with antimicrobial and immunomodulatory activities, virulence factors, and transferability of resistance to antibiotics. Spores of two Bacillus strains were incorporated individually or in combination into hydrophilic poly(ethylene oxide) (PEO) and composite PEO/alginate nanofibers. The nanofiber mats were characterised by a high loading of viable spores (> 7 log CFU/mg) and they maintained viability during electrospinning and 6 months of storage at room temperature. Spores were rapidly released from PEO nanofibers, while presence of alginate in the nanofibers prolonged their release. All formulations exhibited swelling, followed by transformation of the nanofiber mat into a hydrogel and polymer erosion mediating spore release kinetics. The investigated Bacillus strains released metabolites, which were not cytotoxic to peripheral blood mononuclear cells (PBMCs) in vitro. Moreover, their metabolites exhibited antibacterial activity against two periodontopathogens, an antiproliferative effect on PBMCs, and inhibition of PBMC expression of proinflammatory cytokines. In summary, the developed nanofiber-based delivery system represents a promising therapeutic approach to combat biofilm-associated disease on two fronts, namely via modulation of the local microbiota with probiotic bacteria and host immune response with their metabolites.


Assuntos
Bacillus , Nanofibras , Humanos , Leucócitos Mononucleares , Bacillus/genética , Antibacterianos/farmacologia , Polietilenoglicóis , Alginatos
6.
Food Chem Toxicol ; 174: 113684, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36813152

RESUMO

Organic UV filters are ubiquitous as they are used in numerous personal care products. Consequently, people constantly come into direct or indirect contact with these chemicals. Albeit studies of the effects of UV filters on human health have been undertaken, their toxicological profiles are not complete. In this work, we investigated the immunomodulatory properties of eight UV filters representing different chemotypes, including benzophenone-1, benzophenone-3, ethylhexyl methoxycinnamate, octyldimethyl-para-aminobenzoic acid, octyl salate, butylmethoxydibenzoylmethane, 3-benzylidenecamphor, and 2,4-di-tert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol. We demonstrated that none of these UV filters were cytotoxic to THP-1 cells at concentrations up to 50 µM. Importantly, our study highlighted the capacity of nontoxic concentrations of avobenzone and 3-benzylidene camphor to increase the secretion of interleukin 8 (IL-8) from both THP-1 cells and THP-1 derived macrophages. Further, they also exhibited a pronounced decrease of IL-6 and IL-10 release from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The observed immune cell alterations suggest that exposure to 3-BC and BMDM could be involved in immune deregulation. Our research thus provided additional insight into UV filter safety profile.


Assuntos
Cosméticos , Protetores Solares , Humanos , Protetores Solares/toxicidade , Leucócitos Mononucleares , Ácido 4-Aminobenzoico , Macrófagos
7.
Bioorg Chem ; 131: 106311, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495678

RESUMO

Ewing sarcoma is the second most prevalent paediatric malignant bone tumour. In most cases, it is driven by the fusion oncoprotein EWS::FLI1, which acts as an aberrant transcription factor and dysregulates gene expression. EWS::FLI1 and a large number of downstream dysregulated proteins are Hsp90 client proteins, making Hsp90 an attractive target for the treatment of Ewing sarcoma. In this article, we report a new structural class of allosteric Hsp90 C-terminal domain (CTD) inhibitors based on the virtual screening hit TVS24, which showed antiproliferative activity in the SK-N-MC Ewing sarcoma cell line with an IC50 value of 15.9 ± 0.7 µM. The optimised compounds showed enhanced anticancer activity in the SK-N-MC cell line. Exposure of Ewing sarcoma cells to the most potent analogue 11c resulted in depletion of critical Hsp90 client proteins involved in cancer pathways such as EWS::FLI1, CDK4, RAF-1 and IGF1R, without inducing a heat shock response. The results of this study highlight Hsp90 CTD inhibitors as promising new agents for the treatment of Ewing sarcoma.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Sarcoma de Ewing , Humanos , Criança , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral
8.
Environ Sci Pollut Res Int ; 29(49): 73648-73674, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36083363

RESUMO

The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved µg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.


Assuntos
Cosméticos , Disruptores Endócrinos , Compostos Benzidrílicos , Benzofenonas/análise , Humanos , Parabenos/análise , Fenóis , Solo , Água
9.
Biomolecules ; 12(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35883440

RESUMO

Hsp90 is a promising target for the development of novel agents for cancer treatment. The N-terminal Hsp90 inhibitors have several therapeutic limitations, the most important of which is the induction of heat shock response, which can be circumvented by targeting the allosteric binding site on the C-terminal domain (CTD) of Hsp90. In the absence of an Hsp90-CTD inhibitor co-crystal structure, the use of structure-based design approaches for the Hsp90 CTD is difficult and the structural diversity of Hsp90 CTD inhibitors is limited. In this study, we describe the discovery of a novel structural class of Hsp90 CTD inhibitors. A structure-based virtual screening was performed by docking a library of diverse compounds to the Hsp90ß CTD binding site. Three selected virtual hits were tested in the MCF-7 breast cancer cell line, with compound TVS-23 showing antiproliferative activity with an IC50 value of 26.4 ± 1.1 µM. We report here the optimisation, synthesis and biological evaluation of TVS-23 analogues. Several analogues showed significantly enhanced antiproliferative activities in MCF-7 breast cancer and SK-N-MC Ewing sarcoma cell lines, with 7l being the most potent (IC50 = 1.4 ± 0.4 µM MCF-7; IC50 = 2.8 ± 0.4 µM SK-N-MC). The results of this study highlight the use of virtual screening to expand the structural diversity of Hsp90 CTD inhibitors and provide new starting points for further development.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligação Proteica
10.
Chem Commun (Camb) ; 58(63): 8858-8861, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35852517

RESUMO

Targeting deubiquitinating enzymes (DUBs) has emerged as a promising therapeutic approach in several human cancers and other diseases. DUB inhibitors are exciting pharmacological tools but often exhibit limited cellular potency. Here we report PROTACs based on a ubiquitin-specific protease 7 (USP7) inhibitor scaffold to degrade USP7. By investigating several linker and E3 ligand types, including novel cereblon recruiters, we discovered a highly selective USP7 degrader tool compound that induced apoptosis of USP7-dependent cancer cells. This work represents one of the first DUB degraders and unlocks a new drug target class for protein degradation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias , Apoptose , Humanos , Neoplasias/tratamento farmacológico , Peptidase 7 Específica de Ubiquitina/metabolismo
11.
Chemosphere ; 303(Pt 1): 134824, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35525453

RESUMO

The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.


Assuntos
Cosméticos , Disruptores Endócrinos , Parabenos , Plásticos , Água
12.
Molecules ; 27(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35335358

RESUMO

O-GlcNAcylation is an essential post-translational modification installed by the enzyme O-ß-N-acetyl-d-glucosaminyl transferase (OGT). Modulating this enzyme would be extremely valuable to better understand its role in the development of serious human pathologies, such as diabetes and cancer. However, the limited availability of potent and selective inhibitors hinders the validation of this potential therapeutic target. To explore new chemotypes that target the active site of OGT, we performed virtual screening of a large library of commercially available compounds with drug-like properties. We purchased samples of the most promising virtual hits and used enzyme assays to identify authentic leads. Structure-activity relationships of the best identified OGT inhibitor were explored by generating a small library of derivatives. Our best hit displays a novel uridine mimetic scaffold and inhibited the recombinant enzyme with an IC50 value of 7 µM. The current hit represents an excellent starting point for designing and developing a new set of OGT inhibitors that may prove useful for exploring the biology of OGT.


Assuntos
N-Acetilglucosaminiltransferases , Processamento de Proteína Pós-Traducional , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Pesquisa , Relação Estrutura-Atividade
13.
Cells ; 10(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943826

RESUMO

The O-GlcNAcylation is a posttranslational modification of proteins regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase. These enzymes regulate the development, proliferation and function of cells, including the immune cells. Herein, we focused on the role of O-GlcNAcylation in human monocyte derived dendritic cells (moDCs). Our study suggests that inhibition of OGT modulates AKT and MEK/ERK pathways in moDCs. Changes were also observed in the expression levels of relevant surface markers, where reduced expression of CD80 and DC-SIGN, and increased expression of CD14, CD86 and HLA-DR occurred. We also noticed decreased IL-10 and increased IL-6 production, along with diminished endocytotic capacity of the cells, indicating that inhibition of O-GlcNAcylation hampers the transition of monocytes into immature DCs. Furthermore, the inhibition of OGT altered the maturation process of immature moDCs, since a CD14medDC-SIGNlowHLA-DRmedCD80lowCD86high profile was noticed when OGT inhibitor, OSMI-1, was present. To evaluate DCs ability to influence T cell differentiation and polarization, we co-cultured these cells. Surprisingly, the observed phenotypic changes of mature moDCs generated in the presence of OSMI-1 led to an increased proliferation of allogeneic T cells, while their polarization was not affected. Taken together, we confirm that shifting the O-GlcNAcylation status due to OGT inhibition alters the differentiation and function of moDCs in in vitro conditions.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/enzimologia , Monócitos/citologia , Monócitos/enzimologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Monócitos/efeitos dos fármacos , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
14.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943940

RESUMO

Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the ß5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and ß5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the ß5, ß5i, ß1, and ß1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either ß5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.


Assuntos
Cisteína/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Treonina/química , Ubiquitina/química , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Química Computacional , Cisteína/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Relação Estrutura-Atividade , Treonina/imunologia , Ubiquitina/imunologia
15.
Pharmaceutics ; 13(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34452244

RESUMO

Heat shock protein 90 (Hsp90) is a chaperone responsible for the maturation of many cancer-related proteins, and is therefore an important target for the design of new anticancer agents. Several Hsp90 N-terminal domain inhibitors have been evaluated in clinical trials, but none have been approved as cancer therapies. This is partly due to induction of the heat shock response, which can be avoided using Hsp90 C-terminal-domain (CTD) inhibition. Several structural features have been shown to be useful in the design of Hsp90 CTD inhibitors, including an aromatic ring, a cationic center and the benzothiazole moiety. This study established a previously unknown link between these structural motifs. Using ligand-based design methodologies and structure-based pharmacophore models, a library of 29 benzothiazole-based Hsp90 CTD inhibitors was prepared, and their antiproliferative activities were evaluated in MCF-7 breast cancer cells. Several showed low-micromolar IC50, with the most potent being compounds 5g and 9i (IC50, 2.8 ± 0.1, 3.9 ± 0.1 µM, respectively). Based on these results, a ligand-based structure-activity relationship model was built, and molecular dynamics simulation was performed to elaborate the binding mode of compound 9i. Moreover, compound 9i showed degradation of Hsp90 client proteins and no induction of the heat shock response.

16.
Arch Pharm (Weinheim) ; 354(10): e2100151, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34173255

RESUMO

Aromatic scaffolds are an important part of biologically active compounds and molecular probes used to study biochemical pathways and the involved targeted proteins of interest. 1-Oxo-1H-phenalene-2,3-dicarbonitrile-based compounds have been described as inhibitors of the BCL-2 family of proteins, and this core structure represents numerous possibilities for modifications that could lead to improved inhibitory potencies. Many studies demonstrated intriguing characteristics of these compounds in terms of reactivity and, interestingly, some contradictory literature reports appeared about reaction outcomes to synthesize them. Here, we initially provide a condensed overview of transformations performed on the phenalene scaffold, followed by the resynthesis of a 6-phenoxy-substituted derivative. We show that the initial determination of this particular structure was wrong and provide two-dimensional nuclear magnetic resonance (NMR) evidence to assign the structure properly. When preparing new derivatives using the same synthetic route, we observed 6- and 7-substituted regioisomers. After confirming their structures by NMR experiments, the ability of these compounds to inhibit BCL-2 was evaluated. The most potent 1-oxo-1H-phenalene-2,3-dicarbonitrile derivatives inhibited BCL-2 in the nanomolar range and showed double-digit micromolar cytotoxicity against four different cancer cell lines.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias/patologia , Nitrilas/síntese química , Nitrilas/química , Relação Estrutura-Atividade
17.
Front Chem ; 9: 666122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937202

RESUMO

O-GlcNAcylation is an important post-translational and metabolic process in cells that must be carefully regulated. O-GlcNAc transferase (OGT) is ubiquitously present in cells and is the only enzyme that catalyzes the transfer of O-GlcNAc to proteins. OGT is a promising target in various pathologies such as cancer, immune system diseases, or nervous impairment. In our previous work we identified the 2-oxo-1,2-dihydroquinoline-4-carboxamide derivatives as promising compounds by a fragment-based drug design approach. Herein, we report the extension of this first series with several new fragments. As the most potent fragment, we identified 3b with an IC50 value of 116.0 µM. If compared with the most potent inhibitor of the first series, F20 (IC50 = 117.6 µM), we can conclude that the new fragments did not improve OGT inhibition remarkably. Therefore, F20 was used as the basis for the design of a series of compounds with the elongation toward the O-GlcNAc binding pocket as the free carboxylate allows easy conjugation. Compound 6b with an IC50 value of 144.5 µM showed the most potent OGT inhibition among the elongated compounds, but it loses inhibition potency when compared to the UDP mimetic F20. We therefore assume that the binding of the compounds in the O-GlcNAc binding pocket is likely not crucial for OGT inhibition. Furthermore, evaluation of the compounds with two different assays revealed that some inhibitors most likely interfere with the commercially available UDP-Glo™ glycosyltransferase assay, leading to false positive results. This observation calls for caution, when evaluating UDP mimetic as OGT inhibitors with the UDP-Glo™ glycosyltransferase assay, as misinterpretations can occur.

18.
J Med Chem ; 64(11): 7809-7838, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34043358

RESUMO

We report on the design, synthesis, and biological evaluation of a series of nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) desmuramylpeptide agonists with improved in vitro and in vivo adjuvant properties. We identified two promising compounds: 68, a potent nanomolar in vitro NOD2 agonist, and the more lipophilic 75, which shows superior adjuvant activity in vivo. Both compounds had immunostimulatory effects on peripheral blood mononuclear cells at the protein and transcriptional levels, and augmented dendritic-cell-mediated activation of T cells, while 75 additionally enhanced the cytotoxic activity of peripheral blood mononuclear cells against malignant cells. The C18 lipophilic tail of 75 is identified as a pivotal structural element that confers in vivo adjuvant activity in conjunction with a liposomal delivery system. Accordingly, liposome-encapsulated 75 showed promising adjuvant activity in mice, surpassing that of muramyl dipeptide, while achieving a more balanced Th1/Th2 immune response, thus highlighting its potential as a vaccine adjuvant.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/química , Adjuvantes Imunológicos/química , Proteína Adaptadora de Sinalização NOD2/agonistas , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Linhagem Celular , Desenho de Fármacos , Humanos , Imunoglobulina G/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipossomos/química , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD2/metabolismo , Ovalbumina/imunologia , Relação Estrutura-Atividade , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/citologia , Células Th2/imunologia , Células Th2/metabolismo
19.
Eur J Med Chem ; 219: 113455, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33894528

RESUMO

Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (ß5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the ß5i subunit was shown and selectivity against the ß5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the ß5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Oxazóis/química , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Tiazóis/química , Tionas/química
20.
Molecules ; 26(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445542

RESUMO

The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. Selective inhibition of its catalytic activities is therefore a viable approach for the treatment of these diseases. However, the development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. We previously reported 7H-furo[3,2-g]chromen-7-one (psoralen)-based compounds with an oxathiazolone warhead as selective inhibitors of the chymotrypsin-like (ß5i) subunit of immunoproteasome. Here, we describe the influence of the electrophilic warhead variations at position 3 of the psoralen core on the inhibitory potencies. Despite mapping the chemical space with different warheads, all compounds showed decreased inhibition of the ß5i subunit of immunoproteasome in comparison to the parent oxathiazolone-based compound. Although suboptimal, these results provide crucial information about structure-activity relationships that will serve as guidance for the further design of (immuno)proteasome inhibitors.


Assuntos
Furocumarinas/síntese química , Furocumarinas/farmacologia , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/farmacologia , Furocumarinas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/química , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...