Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 105(3): 194-201, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253398

RESUMO

Intracellular Ca2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent-(+)-verticilide (ent-1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product (nat-(-)-verticilide). Here, we examined its 18-membered ring-size oligomer (ent-verticilide B1; "ent-B1") in RyR2 single channel and [3H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent-B1 inhibited RyR2 single channels and RyR2-mediated spontaneous Ca2+ release in Casq2 -/- cardiomyocytes with sub-micromolar potency. ent-B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent-B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 minutes and half-life of 45 minutes after intraperitoneal administration of 3 mg/kg in mice. In vivo, ent-B1 significantly reduced catecholamine-induced ventricular arrhythmias in Casq2 -/- mice in a dose-dependent manner. Hence, we have identified a novel chemical entity - ent-B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. SIGNIFICANCE STATEMENT: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.


Assuntos
Produtos Biológicos , Depsipeptídeos , Camundongos , Animais , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Depsipeptídeos/metabolismo , Depsipeptídeos/uso terapêutico , Morte Súbita Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo
2.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461611

RESUMO

Ca 2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca 2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent- (+)-verticilide ( ent -1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product ( nat -(-)-verticilide). Here, we examined its 18-membered ring-size oligomer ( ent -verticilide B1; " ent -B1") in single RyR2 channel assays, [ 3 H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent -B1 inhibited RyR2 single-channels and [ 3 H]ryanodine binding with low micromolar potency, and RyR2-mediated spontaneous Ca 2+ release in Casq2-/- cardiomyocytes with sub-micromolar potency. ent -B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent -B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 min and half-life of 45 min after intraperitoneal administration of 3 mg/kg in mice. Both 3 mg/kg and 30 mg/kg ent -B1 significantly reduced catecholamine-induced ventricular arrhythmia in Casq2-/- mice. Hence, we have identified a novel chemical entity - ent -B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. Significance statement: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.

3.
Elife ; 122023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199723

RESUMO

The cation-permeable TRPV2 channel is important for cardiac and immune cell function. Cannabidiol (CBD), a non-psychoactive cannabinoid of clinical relevance, is one of the few molecules known to activate TRPV2. Using the patch-clamp technique, we discover that CBD can sensitize current responses of the rat TRPV2 channel to the synthetic agonist 2-aminoethoxydiphenyl borate (2-APB) by over two orders of magnitude, without sensitizing channels to activation by moderate (40°C) heat. Using cryo-EM, we uncover a new small-molecule binding site in the pore domain of rTRPV2 in addition to a nearby CBD site that had already been reported. The TRPV1 and TRPV3 channels are also activated by 2-APB and CBD and share multiple conserved features with TRPV2, but we find that strong sensitization by CBD is only observed in TRPV3, while sensitization for TRPV1 is much weaker. Mutations at non-conserved positions between rTRPV2 and rTRPV1 in either the pore domain or the CBD sites failed to confer strong sensitization by CBD in mutant rTRPV1 channels. Together, our results indicate that CBD-dependent sensitization of rTRPV2 channels engages multiple channel regions, and that the difference in sensitization strength between rTRPV2 and rTRPV1 channels does not originate from amino acid sequence differences at the CBD binding site or the pore domain. The remarkably robust effect of CBD on TRPV2 and TRPV3 channels offers a promising new tool to both understand and overcome one of the major roadblocks in the study of these channels - their resilience to activation.


Assuntos
Canabidiol , Canabinoides , Ratos , Animais , Canabidiol/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura Alta , Mutação
4.
J Pharmacol Exp Ther ; 385(3): 205-213, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894328

RESUMO

The unnatural verticilide enantiomer (ent-verticilide) is a selective and potent inhibitor of cardiac ryanodine receptor (RyR2) calcium release channels and exhibits antiarrhythmic activity in a murine model of catecholaminergic polymorphic ventricular tachycardia (CPVT). To determine verticilide's pharmacokinetic and pharmacodynamic properties in vivo, we developed a bioassay to measure nat- and ent-verticilide in murine plasma and correlated plasma concentrations with antiarrhythmic efficacy in a mouse model of CPVT. nat-Verticilide rapidly degraded in plasma in vitro, showing >95% degradation within 5 minutes, whereas ent-verticilide showed <1% degradation over 6 hours. Plasma was collected from mice following intraperitoneal administration of ent-verticilide at two doses (3 mg/kg, 30 mg/kg). Peak C max and area under the plasma-concentration time curve (AUC) scaled proportionally to dose, and the half-life was 6.9 hours for the 3-mg/kg dose and 6.4 hours for the 30-mg/kg dose. Antiarrhythmic efficacy was examined using a catecholamine challenge protocol at time points ranging from 5 to 1440 minutes after intraperitoneal dosing. ent-Verticilide inhibited ventricular arrhythmias as early as 7 minutes after administration in a concentration-dependent manner, with an estimated potency (IC50) of 266 ng/ml (312 nM) and an estimated maximum inhibitory effect of 93.5%. Unlike the US Food and Drug Administration-approved pan-RyR blocker dantrolene, the RyR2-selective blocker ent-verticilide (30 mg/kg) did not reduce skeletal muscle strength in vivo. We conclude that ent-verticilide has favorable pharmacokinetic properties and reduces ventricular arrhythmias with an estimated potency in the nanomolar range, warranting further drug development. SIGNIFICANCE STATEMENT: ent-Verticilide has therapeutic potential to treat cardiac arrhythmias, but little is known about its pharmacological profile in vivo. The primary purpose of this study is to determine the systemic exposure and pharmacokinetics of ent-verticilide in mice and estimate its efficacy and potency in vivo. The current work suggests ent-verticilide has favorable pharmacokinetic properties and reduces ventricular arrhythmias with an estimated potency in the nanomolar range, warranting further drug development.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/metabolismo , Miócitos Cardíacos/metabolismo
5.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747846

RESUMO

The cation-permeable TRPV2 channel is essential for cardiac and immune cells. Cannabidiol (CBD), a non-psychoactive cannabinoid of clinical relevance, is one of the few molecules known to activate TRPV2. Using the patch-clamp technique we discover that CBD can sensitize current responses of the rat TRPV2 channel to the synthetic agonist 2-aminoethoxydiphenyl borate (2- APB) by over two orders of magnitude, without sensitizing channels to activation by moderate (40 °C) heat. Using cryo-EM we uncover a new small-molecule binding site in the pore domain of rTRPV2 that can be occupied by CBD in addition to a nearby CBD site that had already been reported. The TRPV1 and TRPV3 channels share >40% sequence identity with TRPV2 are also activated by 2-APB and CBD, but we only find a strong sensitizing effect of CBD on the response of mouse TRPV3 to 2-APB. Mutations at non-conserved positions between rTRPV2 and rTRPV1 in either the pore domain or the CBD sites failed to confer strong sensitization by CBD in mutant rTRPV1 channels. Together, our results indicate that CBD-dependent sensitization of TRPV2 channels engages multiple channel regions and possibly involves more than one CBD and 2-APB sites. The remarkably robust effect of CBD on TRPV2 and TRPV3 channels offers a promising new tool to both understand and overcome one of the major roadblocks in the study of these channels - their resilience to activation.

6.
Neuron ; 109(3): 488-501.e4, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264592

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate fast excitatory synaptic transmission in the nervous system. Applying glutamate to outside-out patches containing a single NMDAR, we find that agonist-bound receptors transition to the open state via two conformations, an "unconstrained pre-active" state that contributes to fast synaptic events and a "constrained pre-active" state that does not. To define how glutamate drives these conformations, we decoupled the ligand-binding domains from specific transmembrane segments for GluN1 and GluN2A. Displacements of the pore-forming M3 segments define the energy of fast opening. However, to enter the unconstrained conformation and contribute to fast signaling, the GluN2 pre-M1 helix must be displaced before the M3 segments move. This pre-M1 displacement is facilitated by the flexibility of the S2-M4 of GluN1 and GluN2A. Thus, outer structures-pre-M1 and S2-M4-work in concert to remove constraints and prime the channel for rapid opening, facilitating fast synaptic transmission.


Assuntos
Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Ácido Glutâmico/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
7.
Nat Commun ; 9(1): 3748, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217972

RESUMO

A variety of de novo and inherited missense mutations associated with neurological disorders are found in the NMDA receptor M4 transmembrane helices, which are peripheral to the pore domain in eukaryotic ionotropic glutamate receptors. Subsets of these mutations affect receptor gating with dramatic effects, including in one instance halting it, occurring at a conserved glycine near the extracellular end of M4. Functional experiments and molecular dynamic simulations of constructs with and without substitutions at this glycine indicate that it acts as a hinge, permitting the intracellular portion of the ion channel to laterally expand. This expansion stabilizes long-lived open states leading to slow deactivation and high Ca2+ permeability. Our studies provide a functional and structural framework for the effect of missense mutations on NMDARs at central synapses and highlight how the M4 segment may represent a pathway for intracellular modulation of NMDA receptor function.


Assuntos
Cálcio/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Sinapses/metabolismo , Animais , Encefalopatias/genética , Permeabilidade da Membrana Celular , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glicina/genética , Células HEK293 , Humanos , Lactente , Deficiência Intelectual/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína , Ratos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...