Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(15): 3409-3418.e6, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111402

RESUMO

Epithelial tissues are highly sensitive to anisotropies in mechanical force, with cells altering fundamental behaviors, such as cell adhesion, migration, and cell division.1-5 It is well known that, in the later stages of carcinoma (epithelial cancer), the presence of tumors alters the mechanical properties of a host tissue and that these changes contribute to disease progression.6-9 However, in the earliest stages of carcinoma, when a clonal cluster of oncogene-expressing cells first establishes in the epithelium, the extent to which mechanical changes alter cell behavior in the tissue as a whole remains unclear. This is despite knowledge that many common oncogenes, such as oncogenic Ras, alter cell stiffness and contractility.10-13 Here, we investigate how mechanical changes at the cellular level of an oncogenic cluster can translate into the generation of anisotropic strain across an epithelium, altering cell behavior in neighboring host tissue. We generated clusters of oncogene-expressing cells within otherwise normal in vivo epithelium, using Xenopus laevis embryos. We find that cells in kRasV12, but not cMYC, clusters have increased contractility, which introduces radial stress in the tissue and deforms surrounding host cells. The strain imposed by kRasV12 clusters leads to increased cell division and altered division orientation in neighboring host tissue, effects that can be rescued by reducing actomyosin contractility specifically in the kRasV12 cells. Our findings indicate that some oncogenes can alter the mechanical and proliferative properties of host tissue from the earliest stages of cancer development, changes that have the potential to contribute to tumorigenesis.


Assuntos
Divisão Celular , Neoplasias , Oncogenes , Proteínas Proto-Oncogênicas p21(ras) , Animais , Anisotropia , Carcinogênese/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Xenopus laevis
2.
Cold Spring Harb Protoc ; 2020(3): 105551, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857437

RESUMO

Over many years, the Xenopus laevis embryo has provided a powerful model system to investigate how mechanical forces regulate cellular function. Here, we describe a system to apply reproducible tensile and compressive force to X. laevis animal cap tissue explants and to simultaneously assess cellular behavior using live confocal imaging.


Assuntos
Embrião não Mamífero/embriologia , Gástrula/embriologia , Estresse Mecânico , Xenopus laevis/embriologia , Animais , Padronização Corporal , Divisão Celular , Módulo de Elasticidade , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Gástrula/citologia , Microscopia Confocal
3.
Cell Rep ; 26(8): 2088-2100.e4, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30784591

RESUMO

Distinct mechanisms involving cell shape and mechanical force are known to influence the rate and orientation of division in cultured cells. However, uncoupling the impact of shape and force in tissues remains challenging. Combining stretching of Xenopus tissue with mathematical methods of inferring relative mechanical stress, we find separate roles for cell shape and mechanical stress in orienting and cueing division. We demonstrate that division orientation is best predicted by an axis of cell shape defined by the position of tricellular junctions (TCJs), which align with local cell stress rather than tissue-level stress. The alignment of division to cell shape requires functional cadherin and the localization of the spindle orientation protein, LGN, to TCJs but is not sensitive to relative cell stress magnitude. In contrast, proliferation rate is more directly regulated by mechanical stress, being correlated with relative isotropic stress and decoupled from cell shape when myosin II is depleted.


Assuntos
Forma Celular , Células Epiteliais/fisiologia , Mitose , Estresse Mecânico , Animais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Junções Intercelulares , Masculino , Modelos Teóricos , Fuso Acromático , Xenopus laevis
4.
J Cell Sci ; 131(16)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154086

RESUMO

Dynamic Cell III, a meeting jointly organized by the British Society of Cell Biology (BSCB) and the Biochemical Society, took place at the Manchester Conference Centre, Manchester, UK in March 2018. It brought together a diverse group of scientists from around the world, all with a shared interest in understanding how dynamic functions of the cell are fulfilled. A particular focus was the regulation of the cytoskeleton: in cell division, cell migration and cell-cell interactions. Moreover, a key theme that ran through all presented work was the development of new and exciting technologies to study dynamic cell behaviour.


Assuntos
Biologia Celular/tendências , Fenômenos Fisiológicos Celulares , Congressos como Assunto , Biologia Celular/organização & administração , Comunicação Celular , Divisão Celular/fisiologia , Movimento Celular , Biologia Computacional/tendências , Citoesqueleto/metabolismo , Matriz Extracelular/fisiologia , Humanos , Invenções , Imagem Molecular/métodos , Imagem Molecular/tendências , Proteômica/tendências , Análise de Célula Única/métodos , Análise de Célula Única/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...