Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Phytomedicine ; 135: 156086, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39326133

RESUMO

BACKGROUND: Aronia berry extracts (ABE) have recently been reported to possess significant anti-cancer effects in various malignancies, including colorectal cancer (CRC), due to their high polyphenolic content. However, the molecular mechanism(s) underlying the anti-cancer effects of ABE in CRC remain unclear, which is important to consider when considering their use as complementary medicine approaches in cancer. METHODS: We performed genome-wide transcriptomic profiling and pathway enrichment analysis to identify specific growth signaling pathways associated with ABE treatment in CRC cells. In addition, a series of systematic and comprehensive cell culture studies were performed to investigate the anti-cancer effects of ABE in SW480 and HCT116 CRC cell lines. Subsequently, these findings were validated in patient-derived 3D organoids (PDOs) models. RESULTS: Transcriptomic profiling analysis identified p53 signaling as one of the key enriched pathways mediating the anti-cancer activity of ABE. Analysis of public datasets revealed that Chk1, a key regulator of p53, was one of the critical targets of ABE in CRC. Chk1 and p53 activation was shown to be downregulated with ABE treatment, leading to the induction of cell cycle arrest (p = 0.003-0.014) and enhanced DNA damage (p = 0.015-0.026). Furthermore, these findings were validated in PDOs, where the ABE treatment resulted in significantly fewer and smaller PDOs in a concentration-dependent manner (p = 0.045 - <0.001). CONCLUSIONS: We firstly provide evidence for the role of the p53 signaling pathway as a mediator of the anti-cancer activity of ABE, which provides a rationale for its use as a safe and effective integrative medicine approach in CRC.

2.
Mol Carcinog ; 63(11): 2145-2157, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39282961

RESUMO

Colorectal cancer (CRC) is one of the most prevalent and highly recurrent malignancies worldwide and currently ranks as the second leading cause of cancer-related deaths. The high degree of morbidity and mortality associated with CRC is primarily attributed to the limited effectiveness of current therapeutic approaches and the emergence of chemoresistance to standard treatment modalities. Recent research indicates that several natural products, including Aronia berry extracts (ABE) and oligomeric proanthocyanidins (OPCs), might offer a safe, cost-effective, and multitargeted adjunctive role to cancer treatment. Herein, we hypothesized a combined treatment with ABE and OPCs could synergistically modulate multiple oncogenic pathways in CRC, thereby enhancing their anticancer activity. We initially conducted a series of in vitro experiments to assess the synergistic anticancer effects of ABE and OPCs on CRC cell lines. We demonstrate that these two compounds exhibited a superior synergistic anticancer potential versus individual treatments in enhancing the ability to inhibit cell viability, suppress colony formation, and induce apoptosis (p < 0.05). Consistent with our in vitro findings, we validated this combinatorial anticancer effect in tumor-derived 3D organoids (PDOs; p < 0.01). Using genome-wide transcriptomic profiling, we identified that a specific gene, LMNB1, associated with the cell apoptosis pathway, was found to play a crucial role in exhibiting anticancer effects with these two products. Furthermore, the combined treatment of ABE and OPCs significantly impacted the expression of key proteins involved in apoptosis, including suppressed expression levels of LMNB1 in CRC cell lines (p < 0.05), which resulted in inhibiting downstream AKT phosphorylation. In conclusion, our study provides novel evidence of the synergistic anticancer effects of ABE and OPCs in CRC cells, partially mediated through the regulation of apoptosis and the oncogene LMNB1 within the AKT signaling pathway. These findings have the potential to better appreciate the anticancer potential of natural products in CRC and help improve treatment outcomes in this malignancy.


Assuntos
Apoptose , Neoplasias Colorretais , Sinergismo Farmacológico , Photinia , Extratos Vegetais , Proantocianidinas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proantocianidinas/farmacologia , Proantocianidinas/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Photinia/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Frutas/química , Sobrevivência Celular/efeitos dos fármacos
3.
Biochem Pharmacol ; 228: 116509, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214450

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, primarily due to the intrinsic development of chemoresistance. The most apparent histopathological feature associated with chemoresistance is the alterations in extracellular matrix (ECM) proteins. Natural dietary botanicals such as berberine (BBR) and emodin (EMO) have been shown to possess chemo-preventive potential by regulating ECM in various cancers. Herein, we further investigated the potential synergistic effects of BBR and EMO in enhancing anticancer efficacy by targeting ECM proteins in pancreatic cancer. Genomewide transcriptomic profiling identified that LAMB3 was significantly upregulated in PDAC tissue and highly associated with poor overall survival (OS, hazard ratio [HR], 2.99, 95 % confidence interval [CI], 1.46-6.15; p = 0.003) and progress-free survival (PFS, HR, 2.59; 95 % CI, 1.30-5.18; p = 0.007) in PDAC. A systematic series of functional experiments in BxPC-3 and MIA-PaCa-2 cells revealed that the combination of BBR and EMO exhibited synergistic anti-tumor potential, as demonstrated by cell proliferation, clonogenicity, migration, and invasion assays (p < 0.05-0.001). The combination also altered the expression of key proteins involved in apoptosis, EMT, and EGFR/ERK1,2/AKT signaling. These findings were further supported by patient-derived organoids (PDOs), where the combined treatment resulted in fewer and smaller organoids compared to each compound individually (p < 0.05-0.001). Our results suggest that BBR combined with EMO exerts synergistic anti-cancer effects by modulating the EGFR-signaling pathway through interference with LAMB3 in PDAC.


Assuntos
Berberina , Sinergismo Farmacológico , Emodina , Receptores ErbB , Neoplasias Pancreáticas , Transdução de Sinais , Berberina/farmacologia , Berberina/uso terapêutico , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Emodina/farmacologia , Emodina/uso terapêutico , Receptores ErbB/metabolismo , Receptores ErbB/genética , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Animais , Feminino , Masculino
4.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065761

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor survival rates, primarily due to the limited effectiveness of gemcitabine (Gem)-based chemotherapy, as well as the acquisition of chemotherapeutic resistance. Aronia berry extracts (ABEs), abundant in phenolic constituents, have been recently recognized for their anticancer properties as well as their encouraging potential to help overcome chemoresistance in various cancers. In the present study, we explored ABE's potential to overcome Gem resistance in PDAC and identify specific growth regulatory pathways responsible for its anticancer activity. Through a series of in vitro experiments in gemcitabine-resistant (Gem-R) cells, we elucidated the synergistic interactions between Gem and ABE treatments. Using advanced transcriptomic analysis and network pharmacology, we revealed key molecular pathways linked to chemoresistance and potential therapeutic targets of ABE in Gem-R PDAC cells. Subsequently, the findings from cell culture studies were validated in patient-derived 3D tumor organoids (PDOs). The combination treatment of ABE and Gem demonstrated significant synergism and anticancer effects on cell viability, proliferation, migration, and invasion in Gem-R cells. Transcriptomic analysis revealed a correlation between the NF-Κb signaling pathway and Gem-R (p < 0.05), exhibiting a marked upregulation of MYD88. Additionally, MYD88 exhibited a significant correlation with the overall survival rates in patients with PDAC patients in the TCGA cohort (HR = 1.58, p < 0.05). The MYD88/NF-Κb pathway contributes to chemoresistance by potentially upregulating efflux transporters like P-glycoprotein (P-gp). Our findings revealed that the combined treatment with ABE suppressed the NF-Κb pathway by targeting MYD88 and reducing P-gp expression to overcome Gem resistance. Lastly, the combination therapy proved highly effective in PDOs in reducing both their number and size (p < 0.05). Our study offers previously unrecognized insights into the ability of ABE to overcome Gem resistance in PDAC cells through its targeting of the MYD88/NF-κb/P-gp axis, hence providing a safe and cost-effective adjunctive therapeutic strategy to improve treatment outcomes in PDAC.

7.
Genome Biol ; 25(1): 157, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877540

RESUMO

Methylation-based liquid biopsies show promises in detecting cancer using circulating cell-free DNA; however, current limitations impede clinical application. Most assays necessitate substantial DNA inputs, posing challenges. Additionally, underrepresented tumor DNA fragments may go undetected during exponential amplification steps of traditional sequencing methods. Here, we report linear amplification-based bisulfite sequencing (LABS), enabling linear amplification of bisulfite-treated DNA fragments in a genome-wide, unbiased fashion, detecting cancer abnormalities with sub-nanogram inputs. Applying LABS to 100 patient samples revealed cancer-specific patterns, copy number alterations, and enhanced cancer detection accuracy by identifying tissue-of-origin and immune cell composition.


Assuntos
Metilação de DNA , Neoplasias , Análise de Sequência de DNA , Sulfitos , Humanos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Ácidos Nucleicos Livres , Técnicas de Amplificação de Ácido Nucleico/métodos , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , DNA Tumoral Circulante/genética
8.
Semin Cancer Biol ; 99: 5-23, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341121

RESUMO

Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.


Assuntos
Vesículas Extracelulares , Neoplasias Gastrointestinais , MicroRNAs , Humanos , MicroRNAs/genética , Relevância Clínica , Células Endoteliais/metabolismo , Medicina de Precisão , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia , Biomarcadores/metabolismo
9.
Nat Biotechnol ; 42(10): 1559-1570, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38168991

RESUMO

Bisulfite sequencing (BS-seq) to detect 5-methylcytosine (5mC) is limited by lengthy reaction times, severe DNA damage, overestimation of 5mC level and incomplete C-to-U conversion of certain DNA sequences. We present ultrafast BS-seq (UBS-seq), which uses highly concentrated bisulfite reagents and high reaction temperatures to accelerate the bisulfite reaction by ~13-fold, resulting in reduced DNA damage and lower background noise. UBS-seq allows library construction from small amounts of purified genomic DNA, such as from cell-free DNA or directly from 1 to 100 mouse embryonic stem cells, with less overestimation of 5mC level and higher genome coverage than conventional BS-seq. Additionally, UBS-seq quantitatively maps RNA 5-methylcytosine (m5C) from low inputs of mRNA and allows the detection of m5C stoichiometry in highly structured RNA sequences. Our UBS-seq results identify NSUN2 as the major 'writer' protein responsible for the deposition of ~90% of m5C sites in HeLa mRNA and reveal enriched m5C sites in 5'-regions of mammalian mRNA, which may have functional roles in mRNA translation regulation.


Assuntos
5-Metilcitosina , DNA , RNA , Sulfitos , 5-Metilcitosina/química , Humanos , DNA/química , DNA/genética , Camundongos , Animais , RNA/genética , RNA/química , Sulfitos/química , Células HeLa , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Metilação de DNA/genética
10.
Am J Gastroenterol ; 119(4): 617-624, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294150

RESUMO

INTRODUCTION: Individuals with familial adenomatous polyposis (FAP) have an almost 20% lifetime risk of duodenal adenocarcinoma, currently the leading cause of death in FAP. The Spigelman staging system provides guidance on the surveillance intervals and timing of prophylactic surgery. Still, its accuracy in predicting duodenal and papillary cancer development has not been systematically evaluated. We investigated the sensitivity and cancer risk of the Spigelman stages. METHODS: We performed a systematic review on PubMed, MEDLINE, EMBASE, and Cochrane and used a random-effects model to pool effect sizes. RESULTS: After removing duplicate entries, we screened 1,170 records and included 27 studies for quantitative analysis. Once duodenal polyposis reaches Spigelman stage IV, the risk of duodenal and papillary cancers increased to 25% (95% confidence interval [CI] 12%-45%). However, the sensitivity of Spigelman stage IV for these cancers was low (51%, 95% CI 42%-60%), especially for papillary adenocarcinoma (39%, 95% CI 16%-68%). We investigated the reasons behind these low values and observed that duodenal cancer risk factors included polyps >10 mm, polyp count >20, and polyps with high-grade dysplasia. Risk factors associated with papillary cancer included a papilla with high-grade dysplasia or >10 mm. The evidence on other risk factors was inconclusive. DISCUSSION: The current Spigelman staging system had a low sensitivity for duodenal and papillary adenocarcinomas. Two Spigelman variables (duodenal villous histology and polyp count) and the lack of papilla-specific variables likely contributed to the low sensitivity values for duodenal and papillary cancers, respectively. While clinicians may be familiar with its current form, there is an urgent need to update it.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Duodenais , Estadiamento de Neoplasias , Humanos , Polipose Adenomatosa do Colo/patologia , Neoplasias Duodenais/patologia , Fatores de Risco , Adenocarcinoma Papilar/patologia , Sensibilidade e Especificidade
11.
J Immunother Cancer ; 12(1)2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290769

RESUMO

BACKGROUND: Tumor-associated antigen (TAA)-specific CD8(+) T cells are essential for nivolumab therapy, and irradiation has been reported to have the potential to generate and activate TAA-specific CD8(+) T cells. However, mechanistic insights of T-cell response during combinatorial immunotherapy using radiotherapy and nivolumab are still largely unknown. METHODS: Twenty patients included in this study were registered in the CIRCUIT trial (ClinicalTrials.gov, NCT03453164). All patients had multiple distant metastases and were intolerance or had progressed after primary and secondary chemotherapy without any immune checkpoint inhibitor. In the CIRCUIT trial, eligible patients were treated with a total of 22.5 Gy/5 fractions/5 days of radiotherapy to the largest or symptomatic lesion prior to receiving nivolumab every 2 weeks. In these 20 patients, T-cell responses during the combinatorial immunotherapy were monitored longitudinally by high-dimensional flow cytometry-based, multiplexed major histocompatibility complex multimer analysis using a total of 46 TAAs and 10 virus epitopes, repertoire analysis of T-cell receptor ß-chain (TCRß), together with circulating tumor DNA analysis to evaluate tumor mutational burden (TMB). RESULTS: Although most TAA-specific CD8(+) T cells could be tracked longitudinally, several TAA-specific CD8(+) T cells were detected de novo after irradiation, but viral-specific CD8(+) T cells did not show obvious changes during treatment, indicating potential irradiation-driven antigen spreading. Irradiation was associated with phenotypical changes of TAA-specific CD8(+) T cells towards higher expression of killer cell lectin-like receptor subfamily G, member 1, human leukocyte antigen D-related antigen, T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, CD160, and CD45RO together with lower expression of CD27 and CD127. Of importance, TAA-specific CD8(+) T cells in non-progressors frequently showed a phenotype of CD45RO(+)CD27(+)CD127(+) central memory T cells compared with those in progressors. TCRß clonality (inverted Pielou's evenness) increased and TCRß diversity (Pielou's evenness and Diversity Evenness score) decreased during treatment in progressors (p=0.029, p=0.029, p=0.012, respectively). TMB score was significantly lower in non-progressors after irradiation (p=0.023). CONCLUSION: Oligo-fractionated irradiation induces an immune-modulating effect with potential antigen spreading and the combination of radiotherapy and nivolumab may be effective in a subset of patients with gastric cancer.


Assuntos
Nivolumabe , Neoplasias Gástricas , Humanos , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Linfócitos T CD8-Positivos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Imunidade , Imunoterapia , Antígenos Comuns de Leucócito
12.
Mol Cancer ; 23(1): 1, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172877

RESUMO

This study investigates methylation patterns in circulating cell-free DNA (ccfDNA) for their potential role in colorectal cancer (CRC) detection and the monitoring of treatment response. Through methylation microarrays and quantitative PCR assays, we analyzed 440 samples from The Cancer Genome Atlas (TCGA) and an additional 949 CRC samples. We detected partial or extensive methylation in over 85% of cases within three biomarkers: EFEMP1, SFRP2, and UNC5C. A methylation score for at least one of the six candidate regions within these genes' promoters was present in over 95% of CRC cases, suggesting a viable detection method. In evaluating ccfDNA from 97 CRC patients and 62 control subjects, a difference in methylation and recovery signatures was observed. The combined score, integrating both methylation and recovery metrics, showed high diagnostic accuracy, evidenced by an area under the ROC curve of 0.90 (95% CI = 0.86 to 0.94). While correlating with tumor burden, this score gave early insight into disease progression in a small patient cohort. Our results suggest that DNA methylation in ccfDNA could serve as a sensitive biomarker for CRC, offering a less invasive and potentially more cost-effective approach to augment existing cancer detection and monitoring modalities, possibly supporting comprehensive genetic mutation profiling.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Metilação de DNA , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ácidos Nucleicos Livres/genética , Resultado do Tratamento , Mutação , Proteínas da Matriz Extracelular/genética
13.
Gastroenterology ; 166(1): 178-190.e16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839499

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies. Delayed manifestation of symptoms and lack of specific diagnostic markers lead patients being diagnosed with PDAC at advanced stages. This study aimed to develop a circular RNA (circRNA)-based biomarker panel to facilitate noninvasive and early detection of PDAC. METHODS: A systematic genome-wide discovery of circRNAs overexpressed in patients with PDAC was conducted. Subsequently, validation of the candidate markers in the primary tumors from patients with PDAC was performed, followed by their translation into a plasma-based liquid biopsy assay by analyzing 2 independent clinical cohorts of patients with PDAC and nondisease controls. The performance of the circRNA panel was assessed in conjunction with the plasma levels of cancer antigen 19-9 for the early detection of PDAC. RESULTS: Initially, a panel of 10 circRNA candidates was identified during the discovery phase. Subsequently, the panel was reduced to 5 circRNAs in the liquid biopsy-based assay, which robustly identified patients with PDAC and distinguished between early-stage (stage I/II) and late-stage (stage III/IV) disease. The areas under the curve of this diagnostic panel for the detection of early-stage PDAC were 0.83 and 0.81 in the training and validation cohorts, respectively. Moreover, when this panel was combined with cancer antigen 19-9 levels, the diagnostic performance for identifying patients with PDAC improved remarkably (area under the curve, 0.94) for patients in the validation cohort. Furthermore, the circRNA panel could also efficiently identify patients with PDAC (area under the curve, 0.85) who were otherwise deemed clinically cancer antigen 19-9-negative (<37 U/mL). CONCLUSIONS: A circRNA-based biomarker panel with a robust noninvasive diagnostic potential for identifying patients with early-stage PDAC was developed.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Estadiamento de Neoplasias , Detecção Precoce de Câncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Antígeno CA-19-9 , Adenocarcinoma/patologia
14.
Noncoding RNA ; 9(6)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133210

RESUMO

We are delighted to share with you our thirteenth Journal Club and highlight some of the most interesting papers published recently [...].

15.
Adv Sci (Weinh) ; 10(32): e2303378, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37786278

RESUMO

Although the MAPK/MEK/ERK pathway is prevalently activated in colorectal cancer (CRC), MEK/ERK inhibitors show limited efficiency in clinic. As a downstream target of MAPK, ELK4 is thought to work primarily by forming a complex with SRF. Whether ELK4 can serve as a potential therapeutic target is unclear and the transcriptional regulatory mechanism has not been systemically analyzed. Here, it is shown that ELK4 promotes CRC tumorigenesis. Integrated genomics- and proteomics-based approaches identified SP1 and SP3, instead of SRF, as cooperative functional partners of ELK4 at genome-wide level in CRC. Serum-induced phosphorylation of ELK4 by MAPKs facilitated its interaction with SP1/SP3. The pathological neoangiogenic factor LRG1 is identified as a direct target of the ELK4-SP1/SP3 complex. Furthermore, targeting the ELK4-SP1/SP3 complex by combination treatment with MEK/ERK inhibitor and the relatively specific SP1 inhibitor mithramycin A (MMA) elicited a synergistic antitumor effect on CRC. Clinically, ELK4 is a marker of poor prognosis in CRC. A 9-gene prognostic model based on the ELK4-SP1/3 complex-regulated gene set showed robust prognostic accuracy. The results demonstrate that ELK4 cooperates with SP1 and SP3 to transcriptionally regulate LRG1 to promote CRC tumorigenesis in an SRF-independent manner, identifying the ELK4-SP1/SP3 complex as a potential target for rational combination therapy.


Assuntos
Neoplasias Colorretais , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Neoplasias Colorretais/genética , Carcinogênese/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Elk-4 do Domínio ets/genética , Glicoproteínas
16.
Cancers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835382

RESUMO

BACKGROUND: Some genetic polymorphisms (SNPs) have been proposed as predictors for different colorectal cancer (CRC) outcomes. This work aims to assess their performance in our cohort and find new SNPs associated with them. METHODS: A total of 833 CRC cases were analyzed for seven outcomes, including the use of chemotherapy, and stratified by tumor location and stage. The performance of 63 SNPs was assessed using a generalized linear model and area under the receiver operating characteristic curve, and local SNPs were detected using logistic regressions. RESULTS: In total 26 of the SNPs showed an AUC > 0.6 and a significant association (p < 0.05) with one or more outcomes. However, clinical variables outperformed some of them, and the combination of genetic and clinical data showed better performance. In addition, 49 suggestive (p < 5 × 10-6) SNPs associated with one or more CRC outcomes were detected, and those SNPs were located at or near genes involved in biological mechanisms associated with CRC. CONCLUSIONS: Some SNPs with clinical data can be used in our population as predictors of some CRC outcomes, and the local SNPs detected in our study could be feasible markers that need further validation as predictors.

17.
Cell Biol Toxicol ; 39(6): 2743-2760, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37462807

RESUMO

Gasdermin (GSDM) family, the key executioners of pyroptosis, play crucial roles in anti-pathogen and anti-tumor immunities, although little is known about the expression of GSDM in lung diseases at single-cell resolution, especially in lung epithelial cells. We comprehensively investigated the transcriptomic profiles of GSDM members in various lung tissues from healthy subjects or patients with different lung diseases at single cell level, e.g., chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), lung adenocarcinoma (LUAD), or systemic sclerosis (SSC). The expression of GSDM members varied among pulmonary cell types (immune cells, structural cells, and especially epithelial cells) and even across lung diseases. Regarding disease-associated specificities, we found that GSDMC or GSDMD altered significantly in ciliated epithelia of COPD or LUAD, GSDMD in mucous, club, and basal cells of LUAD and GSDMC in mucous epithelia of para-tumor tissue, as compared with the corresponding epithelia of other diseases. The phenomic specificity of GSDM in lung cancer subtypes was noticed by comparing with 15 non-pulmonary cancers and para-cancer samples. GSDM family gene expression changes were also observed in different lung epithelial cell lines (e.g., HBE, A549, H1299, SPC-1, or H460) in responses to external challenges, including lipopolysaccharide (LPS), lysophosphatidylcholine (lysoPC), cigarette smoking extract (CSE), cholesterol, and AR2 inhibitor at various doses or durations. GSDMA is rarely expressed in those cell lines, while GSDMB and GSDMC are significantly upregulated in human lung epithelia. Our data indicated that the heterogeneity of GSDM member expression exists at different cells, pathologic conditions, challenges, probably dependent upon cell biological phenomes, functions, and behaviors, upon cellular responses to external changes, and the nature and severity of lung disease. Thus, the deep exploration of GSDM phenomes may provide new insights into understanding the single-cell roles in the tissue, regulatory roles of the GSDM family in the pathogenesis, and potential values of biomarker identification and development.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Proteínas de Neoplasias/metabolismo , Transcriptoma/genética , Células Epiteliais/metabolismo , Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/genética , Biomarcadores Tumorais/genética , Proteínas Citotóxicas Formadoras de Poros/genética
18.
Carcinogenesis ; 44(5): 394-403, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37137336

RESUMO

Developing safe and effective therapeutic modalities remains a critical challenge for improving the prognosis of patients with colorectal cancer (CRC). In this regard, targeting epigenetic regulation in cancers has recently emerged as a promising therapeutic approach. Since several natural compounds have recently been shown to be important epigenetic modulators, we hypothesized that Ginseng might exert its anticancer activity by regulating DNA methylation alterations in CRC. In this study, a series of cell culture studies were conducted, followed by their interrogation in patient-derived 3D organoid models to evaluate Ginseng's anticancer activity in CRC. Genome-wide methylation alterations were interrogated by undertaking MethylationEpic BeadChip microarrays. First, 50% inhibitory concentrations (IC50) were determined by cell viability assays, and subsequent Ginseng treatment demonstrated a significant anticancer effect on clonogenicity and cellular migration in CRC cells. Treatment with Ginseng potentiated cellular apoptosis through regulation of apoptosis-related genes in CRC cells. Furthermore, Ginseng treatment downregulated the expression of DNA methyltransferases (DNMTs) and decreased the global DNA methylation levels in CRC cells. The genome-wide methylation profiling identified Ginseng-induced hypomethylation of transcriptionally silenced tumor suppressor genes. Finally, cell culture-based findings were successfully validated in patient-derived 3D organoids. In conclusion, we demonstrate that Ginseng exerts its antitumorigenic potential by regulating cellular apoptosis via the downregulation of DNMTs and reversing the methylation status of transcriptionally silenced genes in CRC.


Assuntos
Neoplasias Colorretais , Panax , Humanos , Metilação de DNA , Epigênese Genética , Panax/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilases de Modificação do DNA , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...