Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39319462

RESUMO

OBJECTIVES: To explore the pathogenesis and potential biomarkers of atrial fibrillation based on bioinformatics. METHODS: Differentially expressed genes and module genes related to atrial fibrillation were obtained from GSE41177 and GSE79768 databases (a platform using Chinese-origin tissue samples) through differential expression analysis and weighted gene co-expression network analysis, and candidate hub genes were obtained by taking intersections, and hub genes were obtained after gender stratification. Subsequently, functional enrichment analysis and immune infiltration analysis were performed. Four machine learning models were constructed based on the hub genes, and the optimal model was selected to construct a prediction nomogram; the prediction ability of the nomogram was verified using calibration curves and decision curves. Finally, potential therapeutic drugs for atrial fibrillation were screened in the DGIdb database. RESULTS: A total of 67 differentially expressed genes and 65 module genes related to atrial fibrillation were identified, and functional enrichment analysis indicated that the pathogenesis of atrial fibrillation was closely related to inflammatory response, immune response, and immune and infectious diseases. Four hub genes (TYROBP, FCER1G, EVI2B and SOD2) with generalization and two genes specifically expressed in male (PILRA and SLC35G3) and female (HLA-DRA and GATP) patients with atrial fibrillation were obtained after gender-segregated screening. The extreme gradient boosting model had satisfactory diagnostic efficacy, and the nomogram constructed based on the hub genes, male significant variables (PILRA, SLC35G3 and SOD2), and female significant variables (FCER1G, SOD2 and TYROBP) had satisfactory predictive ability. Immune infiltration analysis demonstrated a disturbed immune infiltration microenvironment in atrial fibrillation with a higher abundance of plasma cells, neutrophils, and γδT cells, with a higher abundance of neutrophils in males and resting mast cells in females. Two potential drugs for the treatment of atrial fibrillation, namely, valproic acid and methotrexate, were obtained by database and literature screening. CONCLUSIONS: The pathogenesis of atrial fibrillation is closely related to inflammation and immune response, and the microenvironment of immune cell infiltration of cardiomyocytes in the atrial tissue of patients with atrial fibrillation is disordered. TYROBP, FCER1G, EVI2B and SOD2 serve as potential diagnostic biomarkers of atrial fibrillation; PILRA and SLC35G3 serve as potential specific diagnostic biomarkers of atrial fibrillation in the male population, which can effectively predict the risk of atrial fibrillation development and are also potential targets for the treatment of atrial fibrillation.

2.
Sci Rep ; 14(1): 16364, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013959

RESUMO

Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.


Assuntos
Aterosclerose , Biomarcadores , Quimiocina CXCL9 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/diagnóstico , Biomarcadores/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Redes Reguladoras de Genes , Comorbidade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Perfilação da Expressão Gênica
3.
J Cell Mol Med ; 28(8): e18257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526033

RESUMO

This study aims to investigate the mechanism of the anti-atherosclerosis effect of Huayu Qutan Recipe (HYQT) on the inhibition of foam cell formation. In vivo, the mice were randomly divided into three groups: CTRL group, MOD group and HYQT group. The HYQT group received HYQT oral administration twice a day (20.54 g/kg/d), and the plaque formation in ApoE-/- mice was observed using haematoxylin-eosin (HE) staining and oil red O (ORO) staining. The co-localization of aortic macrophages and lipid droplets (LDs) was examined using fluorescent labelling of CD11b and BODIPY fluorescence probe. In vitro, RAW 264.7 cells were exposed to 50 µg/mL ox-LDL for 48 h and then treated with HYQT for 24 h. The accumulation of LDs was evaluated using ORO and BODIPY. Cell viability was assessed using the CCK-8 assay. The co-localization of LC3b and BODIPY was detected via immunofluorescence and fluorescence probe. LysoTracker Red and BODIPY 493/503 were used as markers for lysosomes and LDs, respectively. Autophagosome formation were observed via transmission electron microscopy. The levels of LC3A/B II/LC3A/B I, p-mTOR/mTOR, p-4EBP1/4EBP1, p-P70S6K/P70S6K and TFEB protein level were examined via western blotting, while SQSTM1/p62, Beclin1, ABCA1, ABCG1 and SCARB1 were examined via qRT-PCR and western blotting. The nuclear translocation of TFEB was detected using immunofluorescence. The components of HYQT medicated serum were determined using Q-Orbitrap high-resolution MS analysis. Molecular docking was employed to identify the components of HYQT medicated serum responsible for the mTOR signalling pathway. The mechanism of taurine was illustrated. HYQT has a remarkable effect on atherosclerotic plaque formation and blood lipid level in ApoE-/- mice. HYQT decreased the co-localization of CD11b and BODIPY. HYQT (10% medicated serum) reduced the LDs accumulation in RAW 264.7 cells. HYQT and RAPA (rapamycin, a mTOR inhibitor) could promote cholesterol efflux, while chloroquine (CQ, an autophagy inhibitor) weakened the effect of HYQT. Moreover, MHY1485 (a mTOR agonist) also mitigated the effects of HYQT by reduced cholesterol efflux. qRT-PCR and WB results suggested that HYQT improved the expression of the proteins ABCA1, ABCG1 and SCARB1.HYQT regulates ABCA1 and SCARB1 protein depending on the mTORC1/TFEB signalling pathway. However, the activation of ABCG1 does not depend on this pathway. Q-Orbitrap high-resolution MS analysis results demonstrated that seven core compounds have good binding ability to the mTOR protein. Taurine may play an important role in the mechanism regulation. HYQT may reduce cardiovascular risk by promoting cholesterol efflux and degrading macrophage-derived foam cell formation. It has been observed that HYQT and ox-LDL regulate lipophagy through the mTOR/TFEB signalling pathway, rather than the mTOR/4EBP1/P70S6K pathway. Additionally, HYQT is found to regulate cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis, while taurine plays a significant role in lipophagy.


Assuntos
Aterosclerose , Compostos de Boro , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Colesterol/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Simulação de Acoplamento Molecular , Células Espumosas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Taurina/metabolismo
4.
Sci Rep ; 14(1): 6543, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503760

RESUMO

Atherosclerosis (AS) is the pathologic basis of various cardiovascular and cerebrovascular events, with a high degree of heterogeneity among different arterial beds. However, mechanistic differences between arterial beds remain unexplored. The aim of this study was to explore key genes and potential mechanistic differences between AS in different arterial beds through bioinformatics analysis. Carotid atherosclerosis (CAS), femoral atherosclerosis (FAS), infrapopliteal atherosclerosis (IPAS), abdominal aortic atherosclerosis (AAS), and AS-specific differentially expressed genes (DEGs) were screened from the GSE100927 and GSE57691 datasets. Immune infiltration analysis was used to identify AS immune cell infiltration differences. Unsupervised cluster analysis of AS samples from different regions based on macrophage polarization gene expression profiles. Weighted gene co-expression network analysis (WGCNA) was performed to identify the most relevant module genes with AS. Hub genes were then screened by LASSO regression, SVM-REF, and single-gene differential analysis, and a nomogram was constructed to predict the risk of AS development. The results showed that differential expression analysis identified 5, 4, 121, and 62 CAS, FAS, IPAS, AAS-specific DEGs, and 42 AS-common DEGs, respectively. Immune infiltration analysis demonstrated that the degree of macrophage and mast cell enrichment differed significantly in different regions of AS. The CAS, FAS, IPAS, and AAS could be distinguished into two different biologically functional and stable molecular clusters based on macrophage polarization gene expression profiles, especially for cardiomyopathy and glycolipid metabolic processes. Hub genes for 6 AS (ADAP2, CSF3R, FABP5, ITGAX, MYOC, and SPP1), 4 IPAS (CLECL1, DIO2, F2RL2, and GUCY1A2), and 3 AAS (RPL21, RPL26, and RPL10A) were obtained based on module gene, gender stratification, machine learning algorithms, and single-gene difference analysis, respectively, and these genes were effective in differentiating between different regions of AS. This study demonstrates that there are similarities and heterogeneities in the pathogenesis of AS between different arterial beds.


Assuntos
Doenças da Aorta , Aterosclerose , Doenças das Artérias Carótidas , Humanos , Aterosclerose/genética , Artérias , Algoritmos , Proteínas de Ligação a Ácido Graxo
5.
Int J Biol Macromol ; 261(Pt 2): 129910, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309395

RESUMO

Currently, protein-based hydrogels are widely applied in soft materials, tissue engineering and implantable scaffolds owing to their excellent biocompatibility, and degradability. However, most protein-based hydrogels are soft brittle. In this study, a ductile and mechanically enhanced bovine serum albumin (BSA) hydrogel is fabricated by soaking the a 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) induced BSA hydrogel in (NH4)2SO4 solution. An EDC/NHS coupling reaction induce protein coupling reactions that cause the BSA skeleton to resemble architectural load-bearing walls, protecting the integrity of the hydrogel and preventing collapse. The effects of the BSA and (NH4)2SO4 concentrations on the hydrogel mechanics are evaluated, and the possible strengthening mechanism is discussed. Besides, the highly kosmotropic ions greatly enhance the hydrophobic interaction within BSA gels and dehydration effect and their mechanical properties were significantly enhanced. The various mechanical properties of hydrogels can be regulated over a large window by soaking hydrogels into various ions. And most of them can be washed away, maintaining high biocompatibility of the protein. Importantly, the protein hydrogels prepared by this strategy could also be modified as strain sensors. In a word, this work demonstrates a new, universal method to provide multi-functional, biocompatible, strength enhanced and regulable mechanical pure protein hydrogel, combining the Hofmeister effect with -NH2/-COOH association groups.


Assuntos
Hidrogéis , Soroalbumina Bovina , Soroalbumina Bovina/química , Hidrogéis/química , Engenharia Tecidual , Resistência à Tração , Íons
6.
Inflammation ; 47(4): 1403-1422, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38393550

RESUMO

Hepatic fibrosis (HF), a precursor to cirrhosis and hepatocellular carcinoma, is caused by abnormal proliferation of connective tissue and excessive accumulation of extracellular matrix in the liver. Notably, activation of hepatic stellate cells (HSCs) is a key link in the development of HF. Phillygenin (PHI, C21H24O6) is a lignan component extracted from the traditional Chinese medicine Forsythiae Fructus, which has various pharmacological activities such as anti-inflammatory, antioxidant and anti-tumour effects. However, whether PHI can directly inhibit HSC activation and ameliorate the mechanism of action of HF has not been fully elucidated. Therefore, the aim of the present study was to investigate the in vitro anti-HF effects of PHI and the underlying molecular mechanisms. Transforming growth factor-ß1 (TGF-ß1)-activated mouse HSCs (mHSCs) and human HSCs (LX-2 cells) were used as an in vitro model of HF and treated with different concentrations of PHI for 24 h. Subsequently, cell morphological changes were observed under the microscope, cell viability was analyzed by MTT assay, cell cycle and apoptosis were detected by flow cytometry, and the mechanism of anti-fibrotic effect of PHI was explored by immunofluorescence, ELISA, RT-qPCR and western blot. The results showed that PHI suppressed the proliferation of TGF-ß1-activated mHSCs and LX-2 cells, arrested the cell cycle at the G0/G1 phase, decreased the levels of α-SMA, Collagen I, TIMP1 and MMP2 genes and proteins, and promoted apoptosis in activated mHSCs and LX-2 cells. Besides, PHI reduced the expression of inflammatory factors in activated mHSCs and LX-2 cells, suggesting a potential anti-inflammatory effect. Mechanically, PHI inhibited TGF-ß1-induced HSC activation and inflammation, at least in part through modulation of the Bax/Bcl-2 and Wnt/ß-catenin pathways. Overall, PHI has significant anti-HF effects and may be a promising agent for the treatment of HF.


Assuntos
Apoptose , Células Estreladas do Fígado , Lignanas , Proteínas Proto-Oncogênicas c-bcl-2 , Fator de Crescimento Transformador beta1 , Via de Sinalização Wnt , Proteína X Associada a bcl-2 , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos , Lignanas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , beta Catenina/metabolismo , Linhagem Celular , Anti-Inflamatórios/farmacologia
7.
Mater Today Bio ; 24: 100878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38188645

RESUMO

Excessive bleeding is associated with a high mortality risk. In this study, citric acid and ascorbic acid were sequentially modified on the surface of microcrystalline cellulose (MCAA) to increase its carboxyl content, and their potential as hemostatic materials was investigated. The MCAA exhibited a carboxylic group content of 9.52 %, higher than that of citric acid grafted microcrystalline cellulose (MCA) at 4.6 %. Carboxyl functionalization of microcrystalline cellulose surfaces not only plays a fundamental role in the structure of composite materials but also aids in the absorption of plasma and stimulation of platelets. Fourier -transform infrared (FT-IR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) spectra confirmed that carboxyl groups were successfully introduced onto the cellulose surface. Physical properties tests indicated that the MCAA possessed higher thermal stability (Tmax = 472.2 °C) compared to microcrystalline cellulose (MCC). Additionally, in vitro hemocompatibility, cytotoxicity and hemostatic property results demonstrated that MCAA displayed good biocompatibility (hemolysis ratio <1 %), optimal cell compatibility (cell viability exceeded 100 % after 72 h incubation), and impressive hemostatic effect (BCIMCAA = 31.3 %). Based on these findings, the hemostatic effect of covering a wound with MCAA was assessed, revealing enhanced hemostatic properties using MCAA in tail-amputation and liver-injury hemorrhage models. Furthermore, exploration into hemostatic mechanisms revealed that MCAA can significantly accelerate coagulation through rapid platelet aggregation and activation of the clotting cascade. Notably, MCAA showed remarkable biocompatibility and induced minimal skin irritation. In conclusion, the results affirmed that MCAA is a safe and potentially effective hemostatic agent for hemorrhage control.

8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 751-765, 2023 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38105677

RESUMO

OBJECTIVES: To investigate the mechanism of comorbidity between non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS) based on metabolomics and network pharmacology. METHODS: Six ApoE-/- mice were fed with a high-fat diet for 16 weeks as a comorbid model of NAFLD and AS (model group). Normal diet was given to 6 wildtype C57BL/6J mice (control group). Serum samples were taken from both groups for a non-targeted metabolomics assay to identify differential metabolites. Network pharmacology was applied to explore the possible mechanistic effects of differential metabolites on AS and NAFLD. An in vitro comorbid cell model was constructed using NCTC1469 cells and RAW264.7 macrophage. Cellular lipid accumulation, cell viability, morphology and function of mitochondria were detected with oil red O staining, CCK-8 assay, transmission electron microscopy and JC-1 staining, respectively. RESULTS: A total of 85 differential metabolites associated with comorbidity of NAFLD and AS were identified. The top 20 differential metabolites were subjected to network pharmacology analysis, which showed that the core targets of differential metabolites related to AS and NAFLD were STAT3, EGFR, MAPK14, PPARG, NFKB1, PTGS2, ESR1, PPARA, PTPN1 and SCD. The Kyoto Encyclopedia of Genes and Genomes showed the top 10 signaling pathways were PPAR signaling pathway, AGE-RAGE signaling pathway in diabetic complications, alcoholic liver disease, prolactin signaling pathway, insulin resistance, TNF signaling pathway, hepatitis B, the relax in signaling pathway, IL-17 signaling pathway and NAFLD. Experimental validation showed that lipid metabolism-related genes PPARG, PPARA, PTPN1, and SCD were significantly changed in hepatocyte models, and steatotic hepatocytes affected the expression of macrophage inflammation-related genes STAT3, NFKB1 and PTGS2; steatotic hepatocytes promoted the formation of foam cells and exacerbated the accumulation of lipids in foam cells; the disrupted morphology, impaired function, and increased reactive oxygen species production were observed in steatotic hepatocyte mitochondria, while the formation of foam cells aggravated mitochondrial damage. CONCLUSIONS: Abnormal lipid metabolism and inflammatory response are distinctive features of comorbid AS and NAFLD. Hepatocyte steatosis causes mitochondrial damage, which leads to mitochondrial dysfunction, increased reactive oxygen species and activation of macrophage inflammatory response, resulting in the acceleration of AS development.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ciclo-Oxigenase 2/metabolismo , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Hepatócitos , Macrófagos/metabolismo , Fígado
9.
Biomed Pharmacother ; 166: 115410, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659207

RESUMO

Forsythiae Fructus is a traditional Chinese medicine frequently in clinics. It is extensive in the treatment of various inflammation-related diseases and is renowned as 'the holy medicine of sores'. Phillygenin (C21H24O6, PHI) is a component of lignan that has been extracted from Forsythiae Fructus and exhibits notable biological activity. Modern pharmacological studies have confirmed that PHI demonstrates significant activities in the treatment of various diseases, including inflammatory diseases, liver diseases, cancer, bacterial infection and virus infection. Therefore, this review comprehensively summarizes the pharmacological effects of PHI up to June 2023 by searching PubMed, Web of Science, Science Direct, CNKI, and SciFinder databases. According to the data, PHI shows remarkable anti-inflammatory, antioxidant, hepatoprotective, antitumour, antibacterial, antiviral, immunoregulatory, analgesic, antihypertensive and vasodilatory activities. More importantly, NF-κB, MAPK, PI3K/AKT, P2X7R/NLRP3, Nrf2-ARE, JAK/STAT, Ca2+-calcineurin-TFEB, TGF-ß/Smads, Notch1 and AMPK/ERK/NF-κB signaling pathways are considered as important molecular targets for PHI to exert these pharmacological activities. Studies of its toxicity and pharmacokinetic properties have shown that PHI has very low toxicity, incomplete absorption in vivo and low oral bioavailability. In addition, the physico-chemical properties, new formulations, derivatives and existing challenges and prospects of PHI are also reviewed and discussed in this paper, aiming to provide direction and rationale for the further development and clinical application of PHI.


Assuntos
Lignanas , NF-kappa B , Fosfatidilinositol 3-Quinases , Lignanas/farmacologia , Disponibilidade Biológica
10.
Mater Today Bio ; 23: 100804, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37753374

RESUMO

Liver fibrosis remains a serious problem affecting the health of millions of people worldwide. Hepatic stellate cells (HSCs) are the main effector cells in liver fibrosis and their activation could lead to extracellular matrix deposition, which may aggravate the development of liver fibrosis and inflammation. Previous studies have reported the potential of Phillygenin (PHI) as a hepatoprotective agent to inhibit HSCs activation and fibrosis development. However, the poor water solubility of PHI hinders its clinical application as a potential anti-liver fibrosis therapy. Milk-derived exosomes (mEXO) serve as scalable nanocarriers for delivering chemotherapeutic agents due to their excellent biocompatibility. Here, we developed a PHI-Hyaluronic acid (HA) composite mEXO (PHI-HA-mEXO) drug delivery system, in which DSPE-PEG2000-HA was conjugated to the surface of mEXO to prepare HA-mEXO, and PHI was encapsulated into HA-mEXO to form PHI-HA-mEXO. As a specific receptor for HA, CD44 is frequently over-expressed during liver fibrosis and highly expressed on the surface of activated HSCs (aHSCs). PHI-HA-mEXO can bind to CD44 and enter aHSCs through endocytosis and release PHI. PHI-HA-mEXO drug delivery system can significantly induce aHSCs death without affecting quiescent HSCs (qHSCs) and hepatocytes. Furthermore, we carried out in vitro and in vivo experiments and found that PHI-HA-mEXO could alleviate liver fibrosis through aHSCs-targeted mechanism. In conclusion, the favorable biosafety and superior anti-hepatic fibrosis effects suggest a promising potential of PHI-HA-mEXO in the treatment of hepatic fibrosis. However, detailed pharmokinetics and dose-responsive experiments of PHI-HA-mEXO and the mechanism of mEXO loading drugs are still required before PHI-HA-mEXO can be applied clinically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...