Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 29(6): 066501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799979

RESUMO

Significance: Spectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale. Aim: Develop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data. Approach: We developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler. Results: For label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging. Conclusions: We demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules' photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.


Assuntos
Aprendizado Profundo , Imagem Individual de Molécula , Animais , Imagem Individual de Molécula/métodos , Humanos , Chlorocebus aethiops , Células COS , Microscopia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/análise , Algoritmos , Histonas/química , Histonas/análise
2.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585954

RESUMO

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e., herniations of the nuclear envelope) have been induced by (1) nuclear compression, (2) nuclear migration (e.g., cancer metastasis), (3) actin contraction, (4) lamin mutation or depletion, and (5) heterochromatin enzyme inhibition. Recent work has shown that chromatin transformation is a hallmark of bleb formation, but the transformation of higher-order structures in blebs is not well understood. As higher-order chromatin has been shown to assemble into nanoscopic packing domains, we investigated if (1) packing domain organization is altered within nuclear blebs and (2) if alteration in packing domain structure contributed to bleb formation. Using Dual-Partial Wave Spectroscopic microscopy, we show that chromatin packing domains within blebs are transformed both by B-type lamin depletion and the inhibition of heterochromatin enzymes compared to the nuclear body. Pairing these results with single-molecule localization microscopy of constitutive heterochromatin, we show fragmentation of nanoscopic heterochromatin domains within bleb domains. Overall, these findings indicate that translocation into blebs results in a fragmented higher-order chromatin structure. SUMMARY STATEMENT: Nuclear blebs are linked to various pathologies, including cancer and premature aging disorders. We investigate alterations in higher-order chromatin structure within blebs, revealing fragmentation of nanoscopic heterochromatin domains.

3.
Opt Express ; 28(20): 30210-30221, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114904

RESUMO

Operable under ambient light and providing chemical selectivity, stimulated Raman scattering (SRS) microscopy opens a new window for imaging molecular events on a human subject, such as filtration of topical drugs through the skin. A typical approach for volumetric SRS imaging is through piezo scanning of an objective lens, which often disturbs the sample and offers a low axial scan rate. To address these challenges, we have developed a deformable mirror-based remote-focusing SRS microscope, which not only enables high-quality volumetric chemical imaging without mechanical scanning of the objective but also corrects the system aberrations simultaneously. Using the remote-focusing SRS microscope, we performed volumetric chemical imaging of living cells and captured in real time the dynamic diffusion of topical chemicals into human sweat pores.


Assuntos
Imagem Molecular/métodos , Microscopia Óptica não Linear/instrumentação , Neoplasias Pancreáticas/diagnóstico por imagem , Algoritmos , Humanos , Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...