Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3265, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331968

RESUMO

An increasing number of studies have indicated the crucial involvement of long non-coding RNAs (lncRNAs) in the onset and progression of malignancies. However, a complete understanding of the molecular mechanism underlying the effect of abnormally expressed lncRNAs on breast cancer (BC) remains elusive. This study aimed to elucidate the influence of the lncRNA small nucleolar RNA host gene 1 (SNHG1) on BC progression and its underlying mechanism. Our findings revealed a conspicuous up-regulation of SNHG1 in both BC tissues and cells. The downregulation of SNHG1 was observed to inhibit BC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes, while simultaneously promoting apoptosis. Furthermore, dual-luciferase reporter gene and RNA pull-down assays established that SNHG1 targeted miR-641 expression, while miR-641 targeted RRS1. Rescue studies demonstrated that in vitro SNHG1 silencing could be reversed by the miR-641 inhibitor, as well as by RRS1 upregulation. Moreover, in vivo downregulation of SNHG1 was found to inhibit BC growth. Through the inhibition of the miR-641 level, SNHG1 elevated the level of the downstream target RRS1, thereby fostering BC growth, migration, and invasion while inhibiting apoptosis. These findings suggest that SNHG1 may represent a potential therapeutic target for BC treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Processos Neoplásicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Cell Mol Biol Lett ; 27(1): 93, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273122

RESUMO

BACKGROUND: EVA1A (Eva-1 homolog A), a novel protein involved in autophagy and apoptosis, functions as a tumor suppressor in some human primary cancers, including hepatocellular carcinoma (HCC). While it is consistently downregulated in several cancers, its involvement in hepatocarcinogenesis is still largely unknown. METHODS: We first detected the expression of EVA1A in HCC tissues and cell lines using RT‒qPCR, immunohistochemistry and western blotting and detected the expression of miR-103a-3p by RT‒qPCR. Then, bioinformatics prediction, dual-luciferase reporter gene assays and western blotting were used to screen and identify the upstream microRNA of EVA1A. After manipulating the expression of miR-103a-3p or EVA1A, wound healing, invasion, proliferation, colony formation, apoptosis, autophagy, mitosis and mitochondrial function assays, including mitochondrial membrane potential, ROS and ATP production assays, were performed to investigate the functions of miR-103a-3p targeting EVA1A in HCC cells. Apoptosis-related proteins were assessed by RT‒qPCR (TP53) or western blotting (TP53, BAX, Bcl-2 and caspase-3). Autophagy level was evaluated by observing LC3 puncta and examining the protein levels of p62, Beclin1 and LC3-II/I. RESULTS: We found that EVA1A expression was decreased while miR-103a-3p expression was increased in HCC tissues and cell lines and that their expression was inversely correlated in HCC patients. The expression of miR-103a-3p was associated with HCC tumor stage and poor prognosis. miR-103a-3p could target EVA1A through direct binding to its 3'-UTR and suppress its expression. Overexpression of miR-103a-3p significantly downregulated the expression of EVA1A, TP53 and BAX, upregulated the JAK2/STAT3 pathway and promoted HCC cell migration, invasion and proliferation, while repression of miR-103a-3p dramatically upregulated the expression of EVA1A, TP53, BAX and cleaved-caspase-3, inhibited HCC cell migration, invasion and proliferation, and caused mitochondrial dysfunction and apoptosis. Overexpression of EVA1A significantly attenuated the cancer-promoting effects of miR-103a-3p in HCC cells, while knockdown of EVA1A alleviated the mitochondrial dysfunction and apoptosis caused by miR-103a-3p inhibition. Overexpression of EVA1A did not induce significant changes in autophagy levels, nor did it affect G2/M transition or mitosis. CONCLUSION: These findings indicate that the downregulation of the tumor suppressor EVA1A by miR-103a-3p potentially acts as a key mediator in HCC progression, mainly by inhibiting apoptosis and promoting metastasis. The miR-103a/EVA1A/TP53 axis provides a new potential diagnostic and therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Regiões 3' não Traduzidas , Trifosfato de Adenosina , Proteína X Associada a bcl-2/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Cells ; 11(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36078115

RESUMO

Neuronal oxidative stress caused by mitochondrial dysfunction plays a crucial role in the development of Parkinson's disease (PD). Growing evidence shows that autophagy confers neuroprotection in oxidative-stress-associated PD. This work aims to investigate the involvement of TMEM166, an endoplasmic-reticulum-localized autophagy-regulating protein, in the process of PD-associated oxidative stress through the classic cellular PD model of neuroblastoma SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+). Reactive oxygen species (ROS) production and mitochondrial membrane potential were checked to assess the oxidative stress induced by MPP+ and the cellular ATP generated was determined to evaluate mitochondrial function. The effect on autophagy induction was evaluated by analyzing p62 and LC3-II/I expression and by observing the LC3 puncta and the colocalization of LC3 with LAMP1/ LAMP2. The colocalization of mitochondria with LC3, the colocalization of Tom20 with LAMP1 and Tom20 expression were analyzed to evaluate mitophagy. We found that TMEM166 is up-regulated in transcript levels, but up-regulated first and then down-regulated by autophagic degradation in protein levels upon MPP+-treatment. Overexpression of TMEM166 induces mitochondria fragmentation and dysfunction and exacerbates MPP+-induced oxidative stress and cell viability reduction. Overexpression of TMEM166 is sufficient to induce autophagy and mitophagy and promotes autophagy and mitophagy under MPP+ treatment, while knockdown of TMEM166 inhibits basal autophagic degradation. In addition, overexpressed TMEM166 suppresses AMPK activation, while TMEM166 knockdown enhances AMPK activation. Pharmacological activation of AMPK alleviates the exacerbation of oxidative stress induced by TMEM166 overexpression and increases cell viability, while pharmacological inhibition mitophagy aggravates the oxidative stress induced by MPP+ treatment combined with TMEM166 overexpression. Finally, we find that overexpressed TMEM166 partially localizes to mitochondria and, simultaneously, the active AMPK in mitochondria is decreased. Collectively, these findings suggest that TMEM166 can translocate from ER to mitochondria and inhibit AMPK activation and, in response to mitochondrial oxidative stress, neuronal cells choose to up-regulate TMEM166 to promote autophagy/mitophagy; then, the enhancing autophagy/mitophagy degrades the TMEM166 to activate AMPK, by the two means to maintain cell survival. The continuous synthesis and degradation of TMEM166 in autophagy/mitochondria flux suggest that TMEM166 may act as an autophagy/mitochondria adaptor.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas de Membrana , Doença de Parkinson , 1-Metil-4-fenilpiridínio/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Humanos , Proteínas de Membrana/metabolismo , Mitofagia , Neuroblastoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...