Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0256655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506507

RESUMO

Metabolic disorders are associated with a higher risk of psychiatric disorders. We previously reported that 20-week-old Otsuka Long-Evans Tokushima fatty (OLETF) rats, a model of progressive type 2 diabetes, showed increased anxiety-like behavior and regional area reductions and increased cholecystokinin-positive neurons in the corticolimbic system. However, in which stages of diabetes these alterations in OLETF rats occur remains unclear. We aimed to investigate anxiety-like behavior and its possible mechanisms at different stages of type 2 diabetes in OLETF rats. Eight- and 30-week-old OLETF rats were used as diabetic animal models at the prediabetic and progressive stages of type 2 diabetes respectively, and age-matched Long-Evans Tokushima Otsuka rats served as non-diabetic controls. In the open-field test, OLETF rats showed less locomotion in the center zone and longer latency to leave the center zone at 8 and 30 weeks old, respectively. The areas of the medial prefrontal cortex were smaller in the OLETF rats, regardless of age. The densities of cholecystokinin-positive neurons in OLETF rats were higher in the lateral and basolateral amygdala only at 8 weeks old and in the anterior cingulate and infralimbic cortices and hippocampal cornu ammonis area 3 at both ages. The densities of parvalbumin-positive neurons of OLETF rats were lower in the cornu ammonis area 2 at 8 weeks old and in the prelimbic and infralimbic cortices at both ages. No apoptotic cell death was detected in OLETF rats, but the percentage of neurons co-expressing activating transcription factor 4 and cholecystokinin and parvalbumin was higher in OLETF rats at both ages in the anterior cingulate cortex and basolateral amygdala, respectively. These results suggest that altered emotional behavior and related neurological changes in the corticolimbic system are already present in the prediabetic stage of OLETF rats.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Colecistocinina/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Parvalbuminas/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/psicologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/psicologia , Masculino , Ratos , Ratos Endogâmicos OLETF
2.
J Physiol Sci ; 70(1): 42, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938363

RESUMO

Metabolic disorders can induce psychiatric comorbidities. Both brain and neuronal composition imbalances reportedly induce an anxiety-like phenotype. We hypothesized that alterations of localized brain areas and cholecystokinin (CCK) and parvalbumin (PV) expression could induce anxiety-like behavior in type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Twenty-week-old OLETF and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats were used. The areas of corticolimbic regions were smaller in OLETF rats. The densities of CCK positive neurons in the lateral and basolateral amygdala, hippocampal cornu ammonis area 2, and prelimbic cortex were higher in OLETF rats. The densities of PV positive neurons were comparable between OLETF and LETO rats. Locomotion in the center zone in the open field test was lower in OLETF rats. These results suggest that imbalances of specific brain region areas and neuronal compositions in emotion-related areas increase the prevalence of anxiety-like behaviors in OLETF rats.


Assuntos
Ansiedade/etiologia , Comportamento Animal , Encéfalo/metabolismo , Colecistocinina/metabolismo , Diabetes Mellitus Tipo 2/complicações , Neurônios/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Emoções , Locomoção , Masculino , Teste de Campo Aberto , Parvalbuminas/metabolismo , Ratos Endogâmicos OLETF
3.
Biomed Res ; 41(1): 23-32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32092737

RESUMO

Mild hyperbaric treatment prevents type 2 diabetes progression due to increased oxygen concentration and blood flow in skeletal muscle. However, it remains unknown whether this treatment is effective during all stages of type 2 diabetes. This study aimed to investigate the influences of hyperbaric treatment at 1.3 atmospheres absolute (ATA) on hemodynamic response in various stages of type 2 diabetes. Otsuka Long-Evans Tokushima fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) rats were used as models of type 2 diabetes and healthy controls, respectively. Glucose levels were significantly higher in OLETF rats than in LETO rats at all ages. Glucose intolerance gradually increased with age in OLETF rats. Insulin levels in OLETF rats were significantly higher at 20-week-old, however, were significantly lower at 60-week-old than in LETO rats. Oxy-Hb, total Hb, and StO2 in skeletal muscle were increased during hyperbaric treatment in both rats. The hemodynamic changes were significantly higher in OLETF rats than LETO rats, and those changes were also pronounced at 8-week-old compared with other age in OLETF rats. These results suggest that hyperbaric treatment at 1.3 ATA acts on pathophysiological factors and the efficacy could be found only in the early stage of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/terapia , Hemodinâmica , Oxigenoterapia Hiperbárica/métodos , Músculo Esquelético/patologia , Animais , Glicemia/metabolismo , Peso Corporal , Modelos Animais de Doenças , Progressão da Doença , Teste de Tolerância a Glucose , Insulina/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Oxigênio/uso terapêutico , Ratos , Ratos Endogâmicos OLETF
4.
J Diabetes Res ; 2019: 2694215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828157

RESUMO

Hyperbaric treatment improves hyperglycemia and hyperinsulinemia in type 2 diabetes associated with obesity. However, its mode of action is unknown. The purpose of the present study was to investigate the influences of regular hyperbaric treatment with normal air at 1.3 atmospheres absolute (ATA) on glucose tolerance in type 2 diabetes with obesity. The focus was directed on inflammatory cytokines in the adipose tissue and skeletal muscle. Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used as models of type 2 diabetes with obesity and Long-Evans Tokushima Otsuka (LETO) rats served as healthy controls. The rats were randomly assigned to untreated or hyperbaric treatment groups exposed to 1.3 ATA for 8 h d-1 and 5 d wk-1 for 16 wks. Glucose levels were significantly higher in the diabetic than in the healthy control rats. Nevertheless, glucose levels at 30 and 60 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Insulin levels at fasting and 120 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Hyperbaric treatment also increased interleukin-10 (IL-10) expression in the skeletal muscle and decreased tumor necrosis factor α (TNFα) expression in adipose tissue. These results suggested that TNFα downregulation and IL-10 upregulation in diabetic rats subjected to hyperbaric treatment participate in the crosstalk between the adipose and skeletal muscle tissues and improve glucose intolerance.


Assuntos
Pressão do Ar , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Teste de Tolerância a Glucose , Inflamação/genética , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidade/imunologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos OLETF , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...