Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(4): 742-751, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38974023

RESUMO

Plant natural products (PNPs) exhibit a wide range of biological activities and have essential applications in various fields such as medicine, agriculture, and flavors. Given their natural limitations, the production of high-value PNPs using microbial cell factories has become an effective alternative in recent years. However, host metabolic burden caused by its massive accumulation has become one of the main challenges for efficient PNP production. Therefore, it is necessary to strengthen the transmembrane transport process of PNPs. This review introduces the discovery and mining of PNP transporters to directly mediate PNP transmembrane transportation both intracellularly and extracellularly. In addition to transporter engineering, this review also summarizes several auxiliary strategies (such as small molecules, environmental changes, and vesicles assisted transport) for strengthening PNP transportation. Finally, this review is concluded with the applications and future perspectives of transportation engineering in the construction and optimization of PNP microbial cell factories.

2.
Nat Commun ; 15(1): 5238, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898098

RESUMO

While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.


Assuntos
Benzofenantridinas , Isoquinolinas , Engenharia Metabólica , Saccharomyces cerevisiae , Temperatura , Isoquinolinas/metabolismo , Isoquinolinas/química , Benzofenantridinas/metabolismo , Benzofenantridinas/biossíntese , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Engenharia Metabólica/métodos , Halogenação , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
3.
Curr Opin Biotechnol ; 87: 103136, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705090

RESUMO

Plant natural products (PNPs) are a diverse group of chemical compounds synthesized by plants for various biological purposes and play a significant role in the fields of medicine, agriculture, and industry. In recent years, the development of synthetic biology promises the production of PNPs in microbial expression systems in a sustainable, low-cost, and large-scale manner. This review first introduces multiplex genome editing and PNP pathway assembly in microbial expression systems. Then recent technologies and examples geared toward improving PNP biosynthetic efficiency are discussed from three aspects: pathway optimization, chassis optimization, and modular coculture engineering. Finally, the review is concluded with future perspectives on the combination of machine learning and BioFoundry for the reconstitution and optimization of PNP microbial cell factories.


Assuntos
Produtos Biológicos , Vias Biossintéticas , Engenharia Metabólica , Plantas , Biologia Sintética , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Plantas/metabolismo , Plantas/genética , Biologia Sintética/métodos , Engenharia Metabólica/métodos , Edição de Genes/métodos
4.
Biodes Res ; 6: 0035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725579

RESUMO

Paclitaxel is a renowned broad-spectrum anticancer drug. With the establishment of a chromosome-level high-quality reference genome map of Taxus, recent research on paclitaxel biosynthesis has flourished. The oxetane ring is a distinctive chemical moiety of paclitaxel, and three recent studies have proposed different enzymes involved in its formation, reflecting divergent opinions on whether the pathway proceeds via acetylation followed by epoxidation or vice versa. Subsequently, researchers have elucidated gene clusters responsible for the biosynthesis of the key intermediate baccatin III. Despite varying reports, two studies successfully achieved heterologous biosynthesis of baccatin III by transient expression in tobacco. Taxadiene 5α-hydroxylase (T5αH), the first cytochrome P450 in the pathway, exhibited varied product profiles upon heterologous expression systems, contrasting with observations in native Taxus species, probably due to differences in partner proteins or cellular microenvironments. Further elucidation of biosynthesis mechanisms, including the reaction order and the promiscuity of key enzymes, is anticipated through collaborative efforts among botanists, chemists, and synthetic biologists.

5.
Biotechnol Bioeng ; 121(7): 2091-2105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568751

RESUMO

Peroxisomal compartmentalization has emerged as a highly promising strategy for reconstituting intricate metabolic pathways. In recent years, significant progress has been made in the peroxisomes through harnessing precursor pools, circumventing metabolic crosstalk, and minimizing the cytotoxicity of exogenous pathways. However, it is important to note that in methylotrophic yeasts (e.g. Pichia pastoris), the abundance and protein composition of peroxisomes are highly variable, particularly when peroxisome proliferation is induced by specific carbon sources. The intricate subcellular localization of native proteins, the variability of peroxisomal metabolic pathways, and the lack of systematic characterization of peroxisome targeting signals have limited the applications of peroxisomal compartmentalization in P. pastoris. Accordingly, this study established a high-throughput screening method based on ß-carotene biosynthetic pathway to evaluate the targeting efficiency of PTS1s (Peroxisome Targeting Signal Type 1) in P. pastoris. First, 25 putative endogenous PTS1s were characterized and 3 PTS1s with high targeting efficiency were identified. Then, directed evolution of PTS1s was performed by constructing two PTS1 mutant libraries, and a total of 51 PTS1s (29 classical and 22 noncanonical PTS1s) with presumably higher peroxisomal targeting efficiency were identified, part of which were further characterized via confocal microscope. Finally, the newly identified PTS1s were employed for peroxisomal compartmentalization of the geraniol biosynthetic pathway, resulting in more than 30% increase in the titer of monoterpene compared with when the pathway was localized to the cytosol. The present study expands the synthetic biology toolkit and lays a solid foundation for peroxisomal compartmentalization in P. pastoris.


Assuntos
Engenharia Metabólica , Peroxissomos , Peroxissomos/metabolismo , Peroxissomos/genética , Engenharia Metabólica/métodos , Sinais de Orientação para Peroxissomos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
6.
Curr Opin Biotechnol ; 75: 102697, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35217295

RESUMO

The CRISPR/Cas system has been established as the most powerful and practical genome engineering tool for both fundamental researches and biotechnological applications. Great efforts have been devoted to engineering the CRISPR system with better performance and novel functions. As an essential component, single guide RNAs (sgRNAs) have been extensively designed and engineered with desirable functions. This review highlights representative studies that optimize the sgRNA nucleotide sequences for improved genome editing performance (e.g. activity and specificity) as well as add extra aptamers and end extensions for expanded CRISPR-based functional assays (e.g. transcriptional regulation, genome imaging, and prime editor). The perspectives for further sgRNA engineering to establish more powerful and versatile CRISPR/Cas systems are also discussed.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Sequência de Bases , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética
7.
Biotechnol Bioeng ; 119(5): 1314-1326, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35060115

RESUMO

Yeast cell factories have been increasingly employed for producing plant-derived natural products. Unfortunately, the stability of plant natural product biosynthetic pathway genes, particularly when driven by the same sets of promoters and terminators, remains one of the biggest concerns for synthetic biology. Here we profile genomic loci flanked by essential genes as stable integration sites in a genome-wide manner, for stable maintenance of multigene biosynthetic pathways in yeast. We demonstrate the application of our yeast integration platform in the construction of sanguinarine (24 expression cassettes) and ajmalicine (29 expression cassettes) de novo biosynthetic pathways for the first time. Moreover, we establish stable yeast cell factories that can produce 119.2 mg L-1 heteroyohimbine alkaloids (containing 61.4 mg L-1 ajmalicine) in shake flasks, representing the highest titer of monoterpene indole alkaloids (MIAs) ever reported and promising the complete biosynthesis of other high-value MIAs (such as vinblastine) for biotechnological applications.


Assuntos
Vias Biossintéticas , Alcaloides de Triptamina e Secologanina , Benzofenantridinas , Vias Biossintéticas/genética , Alcaloides Indólicos/metabolismo , Isoquinolinas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo
8.
Biodes Res ; 2022: 0002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37905202

RESUMO

Vinblastine has been used clinically as one of the most potent therapeutics for the treatment of several types of cancer. However, the traditional plant extraction method suffers from unreliable supply, low abundance, and extremely high cost. Here, we use synthetic biology approach to engineer Saccharomyces cerevisiae for de novo biosynthesis of vindoline and catharanthine, which can be coupled chemically or biologically to vinblastine. On the basis of a platform strain with sufficient supply of precursors and cofactors for biosynthesis, we reconstituted, debottlenecked, and optimized the biosynthetic pathways for the production of vindoline and catharanthine. The vindoline biosynthetic pathway represents one of the most complicated pathways ever reconstituted in microbial cell factories. Using shake flask fermentation, our engineered yeast strains were able to produce catharanthine and vindoline at a titer of 527.1 and 305.1 µg·liter-1, respectively, without accumulating detectable amount of pathway intermediates. This study establishes a representative example for the production of valuable plant natural products in yeast.

9.
Commun Biol ; 4(1): 1089, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531512

RESUMO

Vindoline is a plant derived monoterpene indole alkaloid (MIA) with potential therapeutic applications and more importantly serves as the precursor to vinblastine and vincristine. To obtain a yeast strain for high yield production of vindoline from tabersonine, multiple metabolic engineering strategies were employed via the CRISPR/Cas9 mediated multiplex genome integration technology in the present study. Through increasing and tuning the copy numbers of the pathway genes, pairing cytochrome P450 enzymes (CYPs) with appropriate cytochrome P450 reductases (CPRs), engineering the microenvironment for functional expression of CYPs, enhancing cofactor supply, and optimizing fermentation conditions, the production of vindoline was increased to a final titer as high as ∼16.5 mg/L, which is more than 3,800,000-fold higher than the parent strain and the highest tabersonine to vindoline conversion yield ever reported. This work represents a key step of the engineering efforts to establish de novo biosynthetic pathways for vindoline, vinblastine, and vincristine.


Assuntos
Alcaloides Indólicos/metabolismo , Engenharia Metabólica , Quinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Vimblastina/análogos & derivados , Vias Biossintéticas/genética , Sistemas CRISPR-Cas , Saccharomyces cerevisiae/genética , Vimblastina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...