Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(4): 797-812.e4, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36801011

RESUMO

The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.


Assuntos
Ferroptose , Linfócitos Intraepiteliais , Animais , Camundongos , Linfócitos Intraepiteliais/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estresse Oxidativo , Hidrocarbonetos
2.
Immunity ; 56(5): 1027-1045.e8, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36791722

RESUMO

Genetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex. Deletion of the transcription factor SMAD4 in microglia and embryonic-derived BAMs using Crybb1-Cre caused a developmental arrest of microglia, which instead acquired a BAM specification signature. By contrast, the development of genuine BAMs remained unaffected. Our results reveal that SMAD4 drives a transcriptional and epigenetic program that is indispensable for the commitment of brain macrophages to the microglia fate and highlight Crybb1-Cre as a tool for targeting embryonic brain macrophages.


Assuntos
Macrófagos , Microglia , Camundongos , Animais , Microglia/metabolismo , Macrófagos/metabolismo , Integrases/genética , Integrases/metabolismo , Encéfalo/metabolismo
3.
Elife ; 102021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032210

RESUMO

Itch is an unpleasant sensation that elicits robust scratching and aversive experience. However, the identity of the cells and neural circuits that organize this information remains elusive. Here, we show the necessity and sufficiency of chloroquine-activated neurons in the central amygdala (CeA) for both itch sensation and associated aversion. Further, we show that chloroquine-activated CeA neurons play important roles in itch-related comorbidities, including anxiety-like behaviors, but not in some aversive and appetitive behaviors previously ascribed to CeA neurons. RNA-sequencing of chloroquine-activated CeA neurons identified several differentially expressed genes as well as potential key signaling pathways in regulating pruritis. Finally, viral tracing experiments demonstrate that these neurons send projections to the ventral periaqueductal gray that are critical in modulation of itch. These findings reveal a cellular and circuit signature of CeA neurons orchestrating behavioral and affective responses to pruritus in mice.


Assuntos
Tonsila do Cerebelo/patologia , Prurido/patologia , Transcrição Gênica , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal , Cloroquina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Prurido/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
4.
Science ; 369(6504): 626-627, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764056
5.
mSphere ; 5(4)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669460

RESUMO

Immunity to Toxoplasma gondii at early stages of infection in C57BL/6 mice depends on gamma interferon (IFN-γ) production by NK cells, while at later stages it is primarily mediated by CD8 T cells. We decided to explore the requirement for CD4 T cells during T. gondii infection in Batf3-/- mice, which lack CD8α+ dendritic cells (DCs) that are necessary for cross-presentation of cell-associated antigens to CD8 T cells. We show that in this immunodeficient background on a BALB/c background, CD4 T cells become important effector cells and are able to protect Batf3-/- mice from infection with the avirulent strain RHΔku80Δrop5 Independently of the initial NK cell activation, CD4 T cells in wild-type and Batf3-/- mice were the major source of IFN-γ. Importantly, memory CD4 T cells were sufficient to provide protective immunity following transfer into Batf3-/- mice and secondary challenge with the virulent RHΔku80 strain. Collectively, these results show that under situations where CD8 cell responses are impaired, CD4 T cells provide an important alternative immune response to T. gondiiIMPORTANCEToxoplasma gondii is a widespread parasite of animals that causes zoonotic infections in humans. Although healthy individuals generally control the infection with only moderate symptoms, it causes serious illness in newborns and those with compromised immune systems such as HIV-infected AIDS patients. Because rodents are natural hosts for T. gondii, laboratory mice provide an excellent model for studying immune responses. Here, we used a combination of an attenuated mutant strain of the parasite that effectively vaccinates mice, with a defect in a transcriptional factor that impairs a critical subset of dendritic cells, to studying the immune response to infection. The findings reveal that in BALB/c mice, CD4 memory T cells play a dominant role in producing IFN-γ needed to control chronic infection. Hence, BALB/c mice may provide a more appropriate model for declining immunity seen in HIV-AIDS patients where loss of CD4 cells is associated with emergence of opportunistic infections.


Assuntos
Imunidade Adaptativa , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD4-Positivos/imunologia , Proteínas Repressoras/genética , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Regulação da Expressão Gênica , Memória Imunológica , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Organismos Livres de Patógenos Específicos , Toxoplasma/genética , Vacinação
6.
Nat Immunol ; 20(9): 1161-1173, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406378

RESUMO

Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.


Assuntos
Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Fatores Reguladores de Interferon/metabolismo , Macrófagos/citologia , Monócitos/citologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Células-Tronco/citologia , Células Tumorais Cultivadas
7.
Nat Immunol ; 20(9): 1174-1185, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406377

RESUMO

Classical type 1 dendritic cells (cDC1s) are required for antiviral and antitumor immunity, which necessitates an understanding of their development. Development of the cDC1 progenitor requires an E-protein-dependent enhancer located 41 kilobases downstream of the transcription start site of the transcription factor Irf8 (+41-kb Irf8 enhancer), but its maturation instead requires the Batf3-dependent +32-kb Irf8 enhancer. To understand this switch, we performed single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a cluster of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2 and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent the earliest committed cDC1 progenitors. This genetic circuit blocks E-protein activity to exclude plasmacytoid dendritic cell potential and explains the switch in Irf8 enhancer usage during cDC1 development.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/metabolismo , Células-Tronco/citologia
8.
Nat Immunol ; 19(7): 711-722, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29925996

RESUMO

Plasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. Whereas conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors. Here, we found that pDCs developed predominantly from IL-7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, whereas pDC identity relies on TCF4. RNA sequencing of IL-7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed in single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen.


Assuntos
Células Dendríticas/imunologia , Células-Tronco/imunologia , Animais , Linfócitos B/citologia , Linhagem da Célula , Células Cultivadas , Células Dendríticas/citologia , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Fatores Reguladores de Interferon/metabolismo , Lectinas/metabolismo , Masculino , Camundongos , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina-7/metabolismo , Transativadores/metabolismo , Transcrição Gênica
9.
J Neuromuscul Dis ; 4(4): 341-347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29036836

RESUMO

Muscle nicotinic acetylcholine receptor (nAChR) mutations can lead to altered channel kinetics and neuromuscular junction degeneration, a neurodegenerative disorder collectively known as slow-channel syndrome (SCS). A multivariate analysis using running wheels was used to generate activity profiles for a variety of SCS models, uncovering unique locomotor patterns for the different nAChR mutants. Particularly, the αL251T and ɛL269F mutations exhibit decreased event distance, duration, and velocity over a period of 24 hours. Our approach suggests a robust relationship between the pathophysiology of SCS and locomotor activity.


Assuntos
Locomoção/genética , Locomoção/fisiologia , Mutação , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Animais , Modelos Animais de Doenças , Análise da Marcha , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Análise Multivariada , Fenótipo , Especificidade da Espécie , Síndrome , Volição
10.
Eur J Immunol ; 47(8): 1317-1323, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28608405

RESUMO

Ciita was discovered for its role in regulating transcription of major histocompatibility complex class II (MHCII) genes. Subsequently, CIITA was predicted to control many other genes based on reporter and ChIP-seq analysis but few such predictions have been verified in vivo using Ciita-/- mice. Testing these predictions for classical dendritic cells (cDCs) has been particularly difficult, since Ciita-/- mice lack MHCII expression required to identify cDCs. However, recent identification of the cDC-specific transcription factor Zbtb46 allows the identification of cDCs independently of MHCII expression. We crossed Zbtb46gfp mice onto the Ciita-/- background and found that all cDC lineages developed in vivo in the absence of Ciita. We then compared the complete transcriptional profile of wild-type and Ciita-/- cDCs to define the physiological footprint of CIITA for both immature and activated cDCs. We find that CIITA exerts a highly restricted control over only the MHCII, H2-DO and H2-DM genes, in DC1 and DC2 cDC subsets, but not over other proposed targets, including Ii. These findings emphasize the caveats needed in interpreting transcription factor binding sites identified by in-vitro reporter analysis, or by ChIP-seq, which may not necessarily indicate their functional activity in vivo.


Assuntos
Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Células Dendríticas/classificação , Células Dendríticas/fisiologia , Regulação da Expressão Gênica , Genes MHC da Classe II , Interferon gama/genética , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Transativadores/deficiência , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
11.
Nat Immunol ; 18(5): 563-572, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346410

RESUMO

Variable strengths of signaling via the T cell antigen receptor (TCR) can produce divergent outcomes, but the mechanism of this remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared the expression of genes in the TH2 subset of helper T cells to enhancer occupancy by the BATF-IRF4 transcription factor complex at varying strengths of TCR stimulation. Genes dependent on BATF-IRF4 clustered into groups with distinct TCR sensitivities. Enhancers exhibited a spectrum of occupancy by the BATF-IRF4 ternary complex that correlated with the sensitivity of gene expression to TCR signal strength. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity of BATF-IRF4 for direct binding to DNA. Analysis by the chromatin immunoprecipitation-exonuclease (ChIP-exo) method allowed the identification of a previously unknown high-affinity AICE2 motif at a human single-nucleotide polymorphism (SNP) of the gene encoding the immunomodulatory receptor CTLA-4 that was associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex might underlie divergent signaling outcomes in response to various strengths of TCR signaling.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Antígeno CTLA-4/genética , Elementos Facilitadores Genéticos/genética , Fatores Reguladores de Interferon/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Células Th2/fisiologia , Animais , Autoimunidade/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Transdução de Sinais/genética
12.
Proc Natl Acad Sci U S A ; 113(51): 14775-14780, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930303

RESUMO

Dendritic cells (DCs) and monocytes develop from a series of bone-marrow-resident progenitors in which lineage potential is regulated by distinct transcription factors. Zeb2 is an E-box-binding protein associated with epithelial-mesenchymal transition and is widely expressed among hematopoietic lineages. Previously, we observed that Zeb2 expression is differentially regulated in progenitors committed to classical DC (cDC) subsets in vivo. Using systems for inducible gene deletion, we uncover a requirement for Zeb2 in the development of Ly-6Chi monocytes but not neutrophils, and we show a corresponding requirement for Zeb2 in expression of the M-CSF receptor in the bone marrow. In addition, we confirm a requirement for Zeb2 in development of plasmacytoid DCs but find that Zeb2 is not required for cDC2 development. Instead, Zeb2 may act to repress cDC1 progenitor specification in the context of inflammatory signals.


Assuntos
Células Dendríticas/citologia , Regulação da Expressão Gênica , Monócitos/citologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/fisiologia , Animais , Medula Óssea/metabolismo , Linfócitos T CD8-Positivos/citologia , Linhagem da Célula , Citoplasma/metabolismo , Feminino , Citometria de Fluxo , Deleção de Genes , Perfilação da Expressão Gênica , Inflamação , Integrases/metabolismo , Masculino , Camundongos , Neutrófilos/citologia , Neutrófilos/metabolismo
13.
J Exp Med ; 213(13): 2871-2883, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27899443

RESUMO

In this study, to examine cross-presentation by classical dendritic cells (DCs; cDCs), we evaluated the role of RAB43, a protein found to be selectively expressed by Batf3-dependent CD8α+ and CD103+ compared with other DC subsets and immune lineages. Using a specific monoclonal antibody, we localized RAB43 expression to the Golgi apparatus and LAMP1- cytoplasmic vesicles. Mice with germline or conditional deletion of Rab43 are viable and fertile and have normal development of cDCs but show a defect for in vivo and in vitro cross-presentation of cell-associated antigen. This defect is specific to cDCs, as Rab43-deficient monocyte-derived DCs showed no defect in cross-presentation of cell-associated antigen. These results suggest that RAB43 provides a specialized activity used in cross-presentation selectively by CD8α+ DCs but not other antigen-presenting cells.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD8/imunologia , Células Dendríticas/imunologia , Monócitos/imunologia , Proteínas rab de Ligação ao GTP/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Antígenos CD8/genética , Regulação da Expressão Gênica/imunologia , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Proteínas rab de Ligação ao GTP/genética
14.
Cell Rep ; 15(11): 2462-74, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264183

RESUMO

Both classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs) are capable of cross-priming CD8(+) T cells in response to cell-associated antigens. We found that Ly-6C(hi)TREML4(-) monocytes can differentiate into Zbtb46(+) Mo-DCs in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) but that Ly-6C(hi)TREML4(+) monocytes were committed to differentiate into Ly-6C(lo)TREML4(+) monocytes. Differentiation of Zbtb46(+) Mo-DCs capable of efficient cross-priming required both GM-CSF and IL-4 and was accompanied by the induction of Batf3 and Irf4. However, monocytes require IRF4, but not BATF3, to differentiate into Zbtb46(+) Mo-DCs capable of cross-priming CD8(+) T cells. Instead, Irf4(-/-) monocytes differentiate into macrophages in response to GM-CSF and IL-4. Thus, cDCs and Mo-DCs require distinct transcriptional programs of differentiation in acquiring the capacity to prime CD8(+) T cells. These differences may be of consideration in the use of therapeutic DC vaccines based on Mo-DCs.


Assuntos
Apresentação Cruzada/genética , Células Dendríticas/imunologia , Monócitos/citologia , Transcrição Gênica , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Antígenos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Apresentação Cruzada/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fatores Reguladores de Interferon/metabolismo , Interleucina-4/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
15.
Annu Rev Immunol ; 34: 93-119, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26735697

RESUMO

The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.


Assuntos
Células da Medula Óssea/fisiologia , Células Dendríticas/fisiologia , Regulação da Expressão Gênica , Imunidade Celular , Animais , Diferenciação Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade Celular/genética , Camundongos , Ativação Transcricional
16.
Nat Immunol ; 16(7): 708-17, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26054719

RESUMO

The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Células Dendríticas/imunologia , Fatores Reguladores de Interferon/imunologia , Proteínas Repressoras/imunologia , Células-Tronco/imunologia , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Células Cultivadas , Células Clonais/imunologia , Células Clonais/metabolismo , Células Dendríticas/metabolismo , Citometria de Fluxo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência do Ácido Nucleico , Células-Tronco/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
17.
Immunity ; 42(5): 916-28, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25992862

RESUMO

The two major lineages of classical dendritic cells (cDCs) express and require either IRF8 or IRF4 transcription factors for their development and function. IRF8-dependent cDCs promote anti-viral and T-helper 1 (Th1) cell responses, whereas IRF4-expressing cDCs have been implicated in controlling both Th2 and Th17 cell responses. Here, we have provided evidence that Kruppel-like factor 4 (Klf4) is required in IRF4-expressing cDCs to promote Th2, but not Th17, cell responses in vivo. Conditional Klf4 deletion within cDCs impaired Th2 cell responses during Schistosoma mansoni infection, Schistosoma egg antigen (SEA) immunization, and house dust mite (HDM) challenge without affecting cytotoxic T lymphocyte (CTL), Th1 cell, or Th17 cell responses to herpes simplex virus, Toxoplasma gondii, and Citrobacter rodentium infections. Further, Klf4 deletion reduced IRF4 expression in pre-cDCs and resulted in selective loss of IRF4-expressing cDCs subsets in several tissues. These results indicate that Klf4 guides a transcriptional program promoting IRF4-expressing cDCs heterogeneity.


Assuntos
Células Dendríticas/imunologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Esquistossomose mansoni/imunologia , Células Th2/imunologia , Animais , Antígenos de Helmintos/imunologia , Asma/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/imunologia , Deleção de Genes , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Herpes Simples/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae , Células Th2/citologia , Toxoplasmose/imunologia
18.
Exp Neurol ; 270: 88-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25448156

RESUMO

The slow-channel congenital myasthenic syndrome (SCS) is an inherited neurodegenerative disease that caused mutations in the acetylcholine receptor (AChR) affecting neuromuscular transmission. Leaky AChRs lead to Ca(2+) overload and degeneration of the neuromuscular junction (NMJ) attributed to activation of cysteine proteases and apoptotic changes of synaptic nuclei. Here we use transgenic mouse models expressing two different mutations found in SCS to demonstrate that inhibition of prolonged opening of mutant AChRs using fluoxetine not only improves motor performance and neuromuscular transmission but also prevents Ca(2+) overload, the activation of cysteine proteases, calpain, caspase-3 and 9 at endplates, and as a consequence, reduces subsynaptic DNA damage at endplates, suggesting a long term benefit to therapy. These studies suggest that prolonged treatment of SCS patients with open ion channel blockers that preferentially block mutant AChRs is neuroprotective.


Assuntos
Fluoxetina/farmacologia , Atividade Motora/efeitos dos fármacos , Síndromes Miastênicas Congênitas/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Junção Neuromuscular/efeitos dos fármacos , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA