Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39436774

RESUMO

Two donor-acceptor dyes with an ortho-phenylene-linked carbazole electron donor and a benzothiazole-fused boron heterocyclic acceptor were designed, synthesized, and spectroscopically investigated. Due to the steric effects of boron heterocyclic units, the dyes demonstrate different conformations in the crystalline state. The presence of numerous hydrogen-bonding intermolecular interactions and the very weak π-π stacking in the molecular packing results in intense solid-state emission with photoluminescence quantum yields of 40 and 18% for crystals and 50 and 42% for host-based light-emitting layers. The compounds show aggregation-induced emission and thermally activated delayed fluorescence (TADF). The received ionization potential and electron affinity values suggested good charge-injecting ability and bipolar charge-transporting properties of the developed dyes. Transport of holes and electrons was detected in layers of one dye by the time-of-flight measurements. The benzothiazole-based boron difluoride complexes showed high electron mobility of 1.5 × 10-4 and 0.7 × 10-4 cm2 V-1 s-1 at an electric field of 1.35 × 106 V cm-1. Therefore, these dyes were successfully applied as emitters in organic light-emitting diodes with external quantum efficiencies of 15 and 13%, respectively. Our study marks a critical advancement in the area of solid-state emissive boron difluoride dyes, which can be applied as TADF emitters into organic light-emitting diodes. The obtained results reveal that the orientation of the acceptor unit in the ortho-phenylene-linked donor-acceptor dyes makes a significant impact on the TADF activity.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124668, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963947

RESUMO

Three derivatives of fluorinated triphenylpyrimidine with the attached carbazole, phenothiazine, or acridan donor moieties are synthesized by Buchwald-Hartwig reactions. The impact of the donor units on emissive and other properties of the compounds is reported. The compounds exhibit excellent thermal stability, competitive photophysical phenomena such as room temperature phosphorescence (RTP) appearing when compounds are molecularly dispersed in the rigid polymer matrix and thermally activated delayed fluorescence (TADF). The compounds with carbazole and phenothiazine donor moieties show the manifestation of triplet-triplet annihilation in the electroluminescence when used as emitters in organic light-emitting diodes (OLEDs). The phenothiazine-containing compound exhibit dual photoluminescence with the blue-shifted peak corresponding to the quasi-axial conformer and a red-shifted peak to the quasi-equatorial conformer. This derivative shows reversible shifts of emission spectra exceeding 100 nm due to the stable (at least 4 cycles) mechanochromic luminescence under the application of external stimuli. After grinding the emission intensity maximum is observed at 555 nm, after fuming at. ca 448 nm and after melting at 555 nm. The photoluminescence shifts and ON/OFF delayed fluorescence of the phenothiazine-based emitter occur due to the alteration between the crystalline and amorphous states. Optimization of the device structure allows to control the charge balance resulting in external quantum efficiency of up to 5.7 % observed for the OLED based on the phenothiazine-based emitter. This compound also shows the biggest response to the presence of oxygen acting as the quencher of triplet excited energy. The film of the compound doped in rigid Zeonex shows an 8.4-fold increase in emission intensity after evacuation. The optical sensor fabricated using the derivative of fluorinated triphenylpyrimidine and phenothiazine is characterized by the Stern-Volmer constant 1.37 × 10-4 ppm-1.

3.
ACS Appl Mater Interfaces ; 16(23): 30239-30254, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808540

RESUMO

We introduce thiazolo[5,4-d]thiazole (TT)-based derivatives featuring carbazole, phenothiazine, or triphenylamine donor units as hole-selective materials to enhance the performance of wide-bandgap perovskite solar cells (PSCs). The optoelectronic properties of the materials underwent thorough evaluation and were substantially fine-tuned through deliberate molecular design. Time-of-flight hole mobility TTs ranged from 4.33 × 10-5 to 1.63 × 10-3 cm2 V-1 s-1 (at an electric field of 1.6 × 105 V cm-1). Their ionization potentials ranged from -4.93 to -5.59 eV. Using density functional theory (DFT) calculations, it has been demonstrated that S0 → S1 transitions in TTs with carbazolyl or ditert-butyl-phenothiazinyl substituents are characterized by local excitation (LE). Mixed intramolecular charge transfer (ICT) and LE occurred for compounds containing ditert-butyl carbazolyl-, dimethoxy carbazolyl-, or alkoxy-substituted triphenylamino donor moieties. The selected derivatives of TT were used for the preparation of hole-selective layers (HSL) in PSC with the structure of glass/ITO/HSLs/Cs0.18FA0.82Pb(I0.8Br0.2)3/PEAI/PC61BM/BCP/Ag. The alkoxy-substituted triphenylamino containing TT (TTP-DPA) has been demonstrated to be an effective material for HSL. Its layer also functioned well as an interlayer, improving the surface of control HSL_2PACz (i.e., reducing the surface energy of 2PACz from 66.9 to 52.4 mN m-1), thus enabling precise control over perovskite growth energy level alignment and carrier extraction/transportation at the hole-selecting contact of PSCs. 2PACz/TTP-DPA-based devices showed an optimized performance of 19.1 and 37.0% under 1-sun and 3000 K LED (1000 lx) illuminations, respectively. These values represent improvements over those achieved by bare 2PACz-based devices, which attained efficiencies of 17.4 and 32.2%, respectively. These findings highlight the promising potential of TTs for the enhancement of the efficiencies of PSCs.

4.
ACS Omega ; 9(12): 14613-14626, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559965

RESUMO

The synthesis of four 4-(carbazolyl-R-benzoyl)-5-CF3-1H-1,2,3-triazoles with extra groups ((3-methyl)-phenyl-, 4-fluorophenyl-, quinolinyl-, or (3-trifluoromethyl)-phenyl-) in the acceptor fragment has been reported. The effects of substituents with different electron-withdrawing strengths on the thermal, electrochemical, photophysical, and electroluminescence properties of the synthesized compounds are discussed. The results of X-ray analyses and density functional theory (DFT) calculations support unusual molecular packing and electronic properties. The compounds are capable of glass formation with glass transition temperatures ranging from 54-84 °C. Ionization potentials of the compounds are in the range of 5.98-6.22 eV and electron affinities range from 3.09 to 3.35 eV. Under ultraviolet excitation, the neat films of the compounds exhibit blue emission with photoluminescence quantum yields ranging from 18 to 27%. The films of selected compounds are used for the preparation of host-free light-emitting layers of organic light-emitting diodes with very simple device structures and an external quantum efficiency of 4.6%.

5.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541511

RESUMO

Two derivatives of phenyl pyrimidine as acceptor unit and triphenylamino or 4,4'-dimethoxytriphenylamino donor groups were designed and synthesized as emitters for organic light-emitting diodes (OLEDs) aiming to utilize triplet excitons in the electroluminescence. Thermogravimetric analysis revealed high thermal stability of the compounds with 5% weight loss temperatures of 397 and 438 °C. The theoretical estimations and photophysical data show the contributions of local excited and charge transfer states into emission. The addition of the methoxy groups led to the significant improvement of hole-transporting properties and the bathochromic shift of the emission from blue to green-blue spectral diapason. It is shown that mixing of the compounds with the organic host results in facilitation of the delayed emission. The singlet-triplet energy splitting was found to be too big for the thermally activated delayed fluorescence. No thermal activation of the long-lived emission was detected. No experimental evidence for triplet-triplet annihilation and room temperature phosphorescence were detected making the hot exciton mechanism the most probable one. The OLEDs based on the compounds reached the maximum external quantum efficiency of up to 10.6%.

6.
Beilstein J Org Chem ; 19: 1867-1880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116244

RESUMO

The pyridine-3,5-dicarbonitrile moiety has gained significant attention in the field of materials chemistry, particularly in the development of heavy-metal-free pure organic light-emitting diodes (OLEDs). Extensive research on organic compounds exhibiting thermally activated delayed fluorescence (TADF) has led to numerous patents and research articles. This study focuses on the synthesis and investigation of the semiconducting properties of polyaromatic π-systems containing two and three fragments of pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile. The compounds are synthesized by Sonogashira coupling reactions and characterized by steady-state and time-resolved luminescence spectroscopy. The compounds show efficient intramolecular charge transfer (ICT) from the donor to the acceptor. The photoluminescence (PL) spectra of the solutions of the compounds showed non-structured emission peaks in the visible region, which are attributed to ICT emission. The PL intensities of the solutions of the compounds are enhanced after deoxygenation, which is indicative of TADF. The photoluminescence quantum yields and TADF properties of the compounds are sensitive to the medium. Cyclic voltammetry measurements indicate good hole-blocking and electron-injecting properties due to their high ionization potentials. Photoelectron spectroscopy and time-of-flight measurements reveal good electron-transporting properties for one of the compounds. In general, polyaromatic π-systems with pyridine-3,5-dicarbonitrile fragments demonstrate promising potential for use in organic electronic devices, such as OLEDs.

7.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630259

RESUMO

We investigated the effects of sterically nonrestricted electron-accepting substituents of three isomeric indolocarbazole derivatives on their aggregation-induced emission enhancement, mechanochromic luminescence and thermally activated delayed fluorescence. The compounds are potentially efficient emitters for host-free organic light-emitting diodes. The films of indolocarbazole derivatives exhibit emissions with wavelengths of fluorescence intensity maxima from 483 to 500 nm and photoluminescence quantum yields from 31 to 58%. The ionization potentials of the solid samples, measured by photoelectron emission spectrometry, are in the narrow range of 5.78-5.99 eV. The electron affinities of the solid samples are in the range of 2.99-3.19 eV. The layers of the derivatives show diverse charge-transporting properties with maximum hole mobility reaching 10-4 cm2/Vs at high electric fields. An organic light-emitting diode with a light-emitting layer of neat compound shows a turn-on voltage of 4.1 V, a maximum brightness of 24,800 cd/m2, a maximum current efficiency of 12.5 cd/A and an external quantum efficiency of ca. 4.8%. When the compounds are used as hosts, green electroluminescent devices with an external quantum efficiency of ca. 11% are obtained. The linking topology of the isomeric derivatives of indolo[2,3-a]carbazole and indolo[3,2-b]carbazole and the electron-accepting anchors influences their properties differently, such as aggregation-induced emission enhancement, mechanochromic luminescence, thermally activated delayed fluorescence, charge-transporting, and electroluminescent properties. The derivative indolo[3,2-b]carbazole displays good light-emitting properties, while the derivatives of indolo[2,3-a]carbazole show good hosting properties, which make them useful for application in electroluminescent devices.

8.
ACS Appl Energy Mater ; 6(11): 5720-5728, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37323208

RESUMO

Di(9-methyl-3-carbazolyl)-(4-anisyl)amine is presented as an effective hole-transporting material suitable for application in perovskite solar cells. It is obtained by a three-step synthesis from inexpensive starting compounds. It has a relatively high glass transition temperature of 93 °C and thermal stability with 5% weight loss at 374 °C. The compound exhibits reversible double-wave electrochemical oxidation below +1.5 V and polymerization at higher potential. A mechanism for its oxidation is proposed based on electrochemical impedance and electron spin resonance spectroscopy investigations, ultraviolet-visible-near-infrared absorption spectroelectrochemistry results, and density functional theory-based calculations. Vacuum-deposited films of the compound are characterized by a low ionization potential of 5.02 ± 0.06 eV and hole mobility of 10-3 cm2/(Vs) at an electric field of 4 × 105 V/cm. The newly synthesized compound has been used to fabricate dopant-free hole-transporting layers in perovskite solar cells. A power conversion efficiency of 15.5% was achieved in a preliminary study.

9.
ACS Appl Electron Mater ; 5(2): 1013-1023, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873261

RESUMO

Four emitters based on the naphthyridine acceptor moiety and various donor units exhibiting thermally activated delayed fluorescence (TADF) were designed and synthesized. The emitters exhibited excellent TADF properties with a small ΔE ST and a high photoluminescence quantum yield. A green TADF organic light-emitting diode based on 10-(4-(1,8-naphthyridin-2-yl)phenyl)-10H-phenothiazine exhibited a maximum external quantum efficiency of 16.4% with Commission Internationale de L'éclairage coordinates of (0.368, 0.569) as well as a high current and power efficiency of 58.6 cd/A and 57.1 lm/W, respectively. The supreme power efficiency is a record-high value among the reported values of devices with naphthyridine-based emitters. This results from its high photoluminescence quantum yield, efficient TADF, and horizontal molecular orientation. The molecular orientations of the films of the host and the host doped with the naphthyridine emitter were explored by angle-dependent photoluminescence and grazing-incidence small-angle X-ray scattering (GIWAXS). The orientation order parameters (ΘADPL) were found to be 0.37, 0.45, 0.62, and 0.74 for the naphthyridine dopants with dimethylacridan, carbazole, phenoxazine, and phenothiazine donor moieties, respectively. These results were also proven by GIWAXS measurement. The derivative of naphthyridine and phenothiazine was shown to be more flexible to align with the host and to show the favorable horizontal molecular orientation and crystalline domain size, benefiting the outcoupling efficiency and contributing to the device efficiency.

10.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499990

RESUMO

New derivatives of carbazole and diphenyl imidazole for potential multiple applications were synthesized and investigated. Their properties were studied by thermal, optical, photophysical, electrochemical, and photoelectrical measurements. The compounds exhibited relatively narrow blue light-emission bands, which is favorable for deep-blue electroluminescent devices. The synthesized derivatives of imidazole and carbazole were tested as fluorescent emitters for OLEDs. The device showed deep-blue emissions with CIE color coordinates of (0.16, 0.08) and maximum quantum efficiency of 1.1%. The compounds demonstrated high triplet energy values above 3.0 eV and hole drift mobility exceeding 10-4 cm2/V·s at high electric fields. One of the compounds having two diphenyl imidazole moieties and tert-butyl-substituted carbazolyl groups showed bipolar charge transport with electron drift mobility reaching 10-4 cm2/V·s at electric field of 8 × 105 V/cm. The synthesized compounds were investigated as hosts for green, red and sky-blue phosphorescent OLEDs. The green-, red- and sky-blue-emitting devices demonstrated maximum quantum efficiencies of 8.3%, 6.4% and 7.6%, respectively.

11.
ACS Appl Mater Interfaces ; 14(35): 40158-40172, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36000983

RESUMO

Motivated to minimize the effects of solid-state solvation and conformation disorder on emission properties of donor-acceptor-type emitters, we developed five new asymmetric multiple donor-acceptor type derivatives of tert-butyl carbazole and trifluoromethyl benzene exploiting different electron-accepting anchoring groups. Using this design strategy, for a compound containing four di-tert-butyl carbazole units as donors as well as 5-methyl pyrimidine and trifluoromethyl acceptor moieties, small singlet-triplet splitting of ca. 0.03 eV, reverse intersystem crossing rate of 1 × 106 s-1, and high photoluminescence quantum yield of neat film of ca. 75% were achieved. This compound was also characterized by the high value of hole and electron mobilities of 8.9 × 10-4 and 5.8 × 10-4 cm2 V-1 s-1 at an electric field of 4.7 × 105 V/cm, showing relatively good hole/electron balance, respectively. Due to the lowest conformational disorder and solid-state solvation effects, this compound demonstrated very similar emission properties (emission colors) in non-doped and differently doped organic light-emitting diodes (OLEDs). The lowest conformational disorder was observed for the compound with the additional accepting moiety inducing steric hindrance, limiting donor-acceptor dihedral rotational freedom. It can be exploited in the multi-donor-acceptor approach, increasing the efficiency. Using an emitter exhibiting the minimized solid-state solvation and conformation disorder effects, the sky blue OLED with the emitting layer of this compound dispersed in host 1,3-bis(N-carbazolyl)benzene displayed an emission peak at 477 nm, high brightness over 39 000 cd/m2, and external quantum efficiency up to 15.9% along with a maximum current efficiency of 42.6 cd/A and a maximum power efficiency of 24.1 lm/W.

12.
J Org Chem ; 87(6): 4040-4050, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243859

RESUMO

Using the newly designed exciplex-forming 1,2,3-triazole-based acceptors with fast and efficient singlet → triplet intersystem crossing (ISC) processes, carbazole and benzoyl-1H-1,2,3-triazole derivatives were synthesized by Dimroth-type 1,2,3-triazole ring formation and Ullmann-Goldberg C-N coupling reactions. Due to the exciplex formation between covalently bonded electron-donating (carbazole) and 1,2,3-triazole-based electron-accepting moieties with small singlet-triplet splitting (0.07-0.13 eV), the compounds exhibited ISC-assisted bluish-green thermally activated delayed fluorescence. The compounds were characterized by high triplet energy levels ranging from 2.93 to 2.98 eV. The most efficient exciplex-type thermally activated delayed fluorescence was observed for ortho-substituted carbazole-benzoyl-1H-1,2,3-triazole which was selected as a host in the structure of efficient solution-processed white light-emitting diodes. The best device exhibited a maximum power efficiency of 10.7 lm/W, current efficiency of 18.4 cd/A, and quantum efficiency of 7.1%. This device also showed the highest brightness exceeding 10 thousand cd/m2. Usage of the exciplex-forming host allowed us to achieve a low turn-on voltage of 3.6 V. High-quality white electroluminescence was obtained with the close to nature white color coordinates (0.31, 0.34) and a color rendering index of 92.

13.
Phys Chem Chem Phys ; 24(8): 5070-5082, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35146498

RESUMO

Aiming to design bipolar organic semiconductors with high electron mobility and efficient red thermally activated delayed fluorescence (TADF), three donor-acceptor compounds were designed and synthesized selecting 1,8-naphthalimide as an acceptor and phenoxazine, 3,7-di-tert-butylphenothiazine or 2,7-di-tert-butyldimethyl-9,10-dihydroacridine as donor moieties. Aggregation induced emission enhancement was detected for the compounds causing efficient TADF in the solid-state. Photoluminescence quantum yields up to 77% were observed for the films of the compounds doped in a host. The compounds exhibited small singlet-triplet splitting (0.03-0.05 eV), and high reverse intersystem crossing rates of 2.08 × 105-1.13 × 106 s-1. The compounds were characterized by satisfactory hole and electron-injecting properties with ionization potentials of 5.72-5.83 eV and electron affinities of 2.79-2.91 eV. Bipolar charge transport was revealed by time of flight measurements. Electron transport with low dispersity and mobilities exceeding 2 × 10-3 cm2 V-1 s-1 was observed at an electric field of 4.6 × 105 V cm-1. The compounds were used as emitters in red electroluminescent devices, which showed maximum external quantum efficiencies up to 8.2%. Utilization of host-guest systems as light-emitting materials with hosts preferably transporting holes and TADF guests which preferably transport electrons allowed maximum efficiencies to be achieved at a practical brightness of 700-2200 cd m-2. DFT calculations of the geometry, electronic structure, absorption and photoluminescence spectra of all compounds were carried out to prove the conclusions drawn from the experiment. The results of the calculations clearly show that the first excited state for all compounds is the intramolecular charge transfer state. Quantitative analysis of the separation degree of electronic density during excitation allows the observed dependence of the blue shift value in the absorption and emission spectra on the increasing polarity of the solvent to be explained.

14.
J Adv Res ; 33: 41-51, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34603777

RESUMO

INTRODUCTION: Evolution of organic light-emitting diodes (OLEDs) reached the point, which allows to obtain maximum internal quantum efficiency of 100% partly using heavy-metal-free emitters exhibiting thermally activated delayed fluorescence (TADF). Such emitters are also predictively perfect candidates for new generation of optical sensors since triplet harvesting can be sensitive to different analytes (at least to oxygen). Although many organic TADF emitters have been reported so far as OLED emitters, the investigation of materials suitable for both OLEDs and optical sensors remains extremely rare. OBJECTIVES: Aiming to achieve high photoluminescence quantum yields in solid-state and triplet harvesting abilities of organic semiconductors with efficient bipolar charge transport required for application in both blue OLEDs and optical sensors, symmetrical donor-acceptor-donor organic emitters containing pyrimidine-5-carbonitrile electron-withdrawing scaffold and carbazole, tert-butylcarbazole and methoxy carbazole donor moieties were designed, synthesized and investigated as the main objectives of this study. METHODS: New compounds were tested by many experimental methods including optical and photoelectron spectroscopy, time of flight technique, electrochemistry and thermal analyses. RESULTS: Demonstrating advantages of the molecular design, the synthesized emitters exhibited sky-blue efficient TADF with reverse intersystem crossing rates exceeding 106 s-1, aggregation-induced emission enhancement with photoluminescence quantum yields in solid state exceeding 50%, hole and electron transporting properties with charge mobilities exceeding 10-4 cm2/V·s, glass-forming properties with glass transition temperatures reaching 177 °C. Sky-blue OLEDs with non-doped light-emitting layers of the synthesized emitter showed maximum external efficiency of 12.8% while the doped device with the same emitter exhibited maximum external efficiency of 14%. The synthesized emitters were also used as oxygen probes for optical sensors with oxygen sensitivity estimated by the Stern-Volmer constant of 3.24·10-5 ppm-1. CONCLUSION: The developed bipolar TADF emitters with pyrimidine-5-carbonitrile and carbazole moieties showed effective applicability in both blue OLEDs and optical sensors.

15.
Org Biomol Chem ; 19(2): 406-415, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33313635

RESUMO

Two highly emissive carbazole-containing thiazole-fused oxadiazaborinines were designed and synthesized. These N,O-chelated organoboron dyes displayed large Stokes shifts and remarkable solvatofluorochromism in solutions, as well as good thermal stability and comparatively high photoluminescence quantum yields (up to 34%) in the solid state. The presence of a carbazole donor unit, linked with the oxadiazaborinine acceptor via a phenyl linker, restricted intramolecular rotation, leading to enhanced aggregation-induced emission properties of the compounds: in THF/water mixtures with a large water percentage, they demonstrated the formation of emissive nanoaggregates with an average size of 79 and 89 nm for complexes 2 and 3, respectively. The introduction of bulky tert-butyl groups attached to the carbazole moiety induced significant mechanofluorochromic properties of the compounds.

16.
ACS Appl Mater Interfaces ; 12(44): 49895-49904, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33095574

RESUMO

High-quality host materials are indispensable for the construction in the emitting layer of efficient organic light-emitting diodes (OLEDs), especially in a guest and host system. The good carrier transport and energy transfer between the host and emitters are out of necessity. In this work, a wide bandgap and bipolar organic compound, 2,2'-bis(4,5-diphenyl-(1,2,4)-triazol-3-yl)biphenyl (BTBP), conjugating two electron-transporting triazole moieties on a hole-transporting biphenyl core, was synthesized and characterized. The wide bandgap of 4.0 eV makes the promise in efficient energy transfer between the host and various color emitters to apply as the universal host, especially for blue emitters. The close electron and hole mobilities perform the same order of 10-5 cm2·V-1·s-1, identified as bipolar behavior and benefited for carrier balance at low bias. Although carrier transportation belongs to bipolar behavior at a low electrical field, the electron mobility is much faster than the hole one at a high electrical field and belongs to electron-transporting behavior. Employing the BTBP as the host matrix mixed with a phosphor dopant, iridium(III)bis[4,6-di-fluorophenyl-pyridinato-N,C2]picolinate, a high-efficiency sky-blue phosphorescent organic light-emitting diode (OLED) was achieved with a maximum current efficiency of 65.9 cd/A, maximum power efficiency of 62.8 lm/W, and maximum external quantum efficiency of 30.2%.

17.
Dalton Trans ; 49(11): 3393-3397, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32129412

RESUMO

The first examples of phosphorescent platinum complexes bearing 2- and 3-(2-pyridyl)benzo[b]selenophenes (PyBSe) were synthesized and fully characterized. Almost identical ionization potential values (5.6 and 5.58 eV) of the solid samples of the Pt complexes were obtained by electron photoemission spectroscopy. Having slightly different molecular design, the solid solutions of the complexes emitted efficient green and red phosphorescence with absolute quantum yields of 52% (for green) and 11.6% (for red). It is demonstrated that the platinum complexes synthesized can be used as phosphorescent dopants for hybrid solution-processable OLEDs.

18.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973202

RESUMO

Aiming to design blue fluorescent emitters with high photoluminescence quantum yields in solid-state, nitrogen-containing heteroaromatic 9,9-dimethylacridine was refined by tetraphenylethene and triphenylethene. Six tetra-/triphenylethene-substituted 9,9-dimethylacridines were synthesized by the Buchwald-Hartwig method with relatively high yields. Showing effects of substitution patterns, all emitters demonstrated high fluorescence quantum yields of 26-53% in non-doped films and 52-88% in doped films due to the aggregation induced/enhanced emission (AIE/AIEE) phenomena. In solid-state, the emitters emitted blue (451-481 nm) without doping and deep-blue (438-445 nm) with doping while greenish-yellow emission was detected for two compounds with additionally attached cyano-groups. The ionization potentials of the derivatives were found to be in the relatively wide range of 5.43-5.81 eV since cyano-groups were used in their design. Possible applications of the emitters were demonstrated in non-doped and doped organic light-emitting diodes with up to 2.3 % external quantum efficiencies for simple fluorescent devices. In the best case, deep-blue electroluminescence with chromaticity coordinates of (0.16, 0.10) was close to blue color standard (0.14, 0.08) of the National Television System Committee.


Assuntos
Acridonas/química , Luminescência , Acridonas/síntese química , Varredura Diferencial de Calorimetria , Eletricidade , Eletroquímica , Furanos/química , Espectrofotometria Ultravioleta , Temperatura , Tolueno/química
19.
ACS Appl Mater Interfaces ; 11(44): 41570-41579, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31609582

RESUMO

Recent efficiency records of organic photovoltaics (OPV) highlight stability as a limiting weakness. Incorporation of stabilizers is a desirable approach for inhibiting degradation-it is inexpensive and readily up-scalable. However, to date, such additives have had limited success. We show that ß-carotene (BC), an inexpensive and green, naturally occurring antioxidant, dramatically improves OPV stability. When compared to nonstabilized reference devices, the accumulated power generation of PTB7:[70]PCBM devices in the presence of BC increases by an impressive factor of 6, due to stabilization of both the burn-in and the lifetime, and by a factor of 21 for P3HT:[60]PCBM devices, owing to a longer lifetime. Using electron spin resonance and time-resolved near-IR emission spectroscopies, we probed radical and singlet oxygen concentrations. We demonstrate that singlet oxygen sensitized by [70]PCBM causes the "burn-in" of PTB7:[70]PCBM devices and that BC effectively mitigates it. Our results provide an effective solution to the problem that currently limits widespread use of OPV.

20.
Inorg Chem ; 58(15): 10174-10183, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31310535

RESUMO

The synthesis of new iridium(III) complexes containing a 2-(benzo[b]selenophen-2-yl)pyridine ligand is reported along with their photophysical, thermal, electrochemical and electroluminescent properties. These complexes are characterized by deep red phosphorescence with photoluminescence quantum yields exceeding 31% in the solid state. Solid layers of the complexes were characterized by ionization potentials of 5.17-5.27 eV and electron affinities of 2.87-2.95 eV. Their thermal and electrochemical stabilities were proved by cyclic voltammetry and thermogravimetric analysis. Deep red selenium-based iridium phosphorescent emitters were used in red electroluminescent devices which were characterized by a deep red color with Commission Internationale de l'Eclairage (CIE 1931) chromaticity coordinates (x, y) of (0.69, 0.31). This color is deeper than that defined by the red color standard (0.67, 0.33) of the National Television System Committee (NTSC) or CIE 1931 of (0.68, 0.32) of the widely known red phosphorescent emitter bis(1-phenylisoquinoline)(acetylacetonate)iridium(III) (Ir(piq)2(acac)). Using newly developed deep red iridium complexes, white hybrid wet-processable light-emitting devices were fabricated, the electroluminescence of which was characterized by a white color with a color rendering index (CRI) reaching 85. White hybrid OLEDs were obtained by mixing blue fluorescence, green thermally activated delayed fluorescence, and red phosphorescence. They showed a maximum brightness exceeding 10000 cd/m2 and a high external quantum efficiency of 6.3% as for solution-processed white devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...