Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 513
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411092, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109443

RESUMO

A lateral expansion of molecular spoked wheels (MSWs) based on an all-phenylene backbone is described. The MSWs contain a central hub, six spokes and a rim that is formed by a sixfold Yamamoto coupling of the respective non-cyclized dodecabromo precursor yielding MSWs with up to 30 phenylene rings in the perimeter. Attempts to prepare compounds of such size without flexible side groups at the spokes were unsuccessful, most probably due to an aggregation and accompanying oligomerization of the precursors during the cyclization. To overcome these problems, fluorene units are inserted into the spokes. These contain additional alkyl chains and lead to a curvature of the wheels. Quantum chemical calculations on the mechanism of the Yamamoto coupling leads to geometry and strain-related criteria for the successful rim closure to the respective MSW. Subsequently, MSWs are prepared with four and even six phenylene units at each edge of the hexagonal wheels. The resulting MSWs are characterized by spectroscopic methods, and additionally some of them are visualized via scanning tunneling microscopy (STM).

2.
Phys Chem Chem Phys ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092890

RESUMO

Efficient dispersion corrections are an indispensable component of modern density functional theory, semi-empirical quantum mechanical, and even force field methods. In this work, we extend the well established D3 and D4 London dispersion corrections to the full actinides series, francium, and radium. To keep consistency with the existing versions, the original parameterization strategy of the D4 model was only slightly modified. This includes improved reference Hirshfeld atomic partial charges at the ωB97M-V/ma-def-TZVP level to fit the required electronegativity equilibration charge (EEQ) model. In this context, we developed a new actinide data set called AcQM, which covers the most common molecular actinide compound space. Furthermore, the efficient calculation of dynamic polarizabilities that are needed to construct CAB6 dispersion coefficients was implemented into the ORCA program package. The extended models are assessed for the computation of dissociation curves of actinide atoms and ions, geometry optimizations of crystal structure cutouts, gas-phase structures of small uranium compounds, and an example extracted from a small actinide complex protein assembly. We found that the novel parameterizations perform on par with the computationally more demanding density-dependent VV10 dispersion correction. With the presented extension, the excellent cost-accuracy ratio of the D3 and D4 models can now be utilized in various fields of computational actinide chemistry and, e.g., in efficient composite DFT methods such as r2SCAN-3c. They are implemented in our freely available standalone codes (dftd4, s-dftd3) and the D4 version will be also available in the upcoming ORCA 6.0 program package.

3.
J Phys Chem A ; 128(30): 6324-6335, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028862

RESUMO

Charge-transfer (CT) excited states are crucial to organic light-emitting diodes (OLEDs), particularly to those based on thermally activated delayed fluorescence (TADF). However, accurately modeling CT states remains challenging, even with modern implementations of (time-dependent) density functional theory [(TD-)DFT], especially in a dielectric environment. To identify shortcomings and improve the methodology, we previously established the STGABS27 benchmark set with highly accurate experimental references for the adiabatic energy gap between the lowest singlet and triplet excited states (ΔEST). Here, we diversify this set to the STGABS27-EMS benchmark by including experimental emission energies (Eem) and use this new set to (re)-evaluate various DFT-based approaches. Surprisingly, these tests demonstrate that a state-specific (un)restricted open-shell Kohn-Sham (U/ROKS) DFT coupled with a polarizable continuum model for perturbative state-specific nonequilibrium solvation (ptSS-PCM) provides exceptional accuracy for predicting Eem over a wide range of density functionals. In contrast, the main workhorse of the field, Tamm-Dancoff-approximated TD-DFT (TDA-DFT) paired with the same ptSS-PCM, is distinctly less accurate and strongly functional-dependent. More importantly, while TDA-DFT requires the choice of two very different density functionals for good performance on either ΔEST or Eem, the time-independent U/ROKS/PCM approaches deliver excellent accuracy for both quantities with a wide variety of functionals.

4.
J Am Chem Soc ; 146(28): 19279-19285, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976843

RESUMO

We report an incredibly reducing and redox-active Mn-I dianion, [Mn(CO)3(Ph2B(tBuNHC)2)]2- (NHC = N-heterocyclic carbene), furnished via 2e- reduction of the parent 16e- MnI complex with Na0 or K0. Cyclic voltammograms show a Mn0/-I redox couple at -3.13 V vs Fc+/0 in tetrahydrofuran (THF), -3.06 V in 1,2-dimethoxyethane, and -2.85 V in acetonitrile. The diamagnetic Mn-I dianion is stable in solution and solid-state at room temperature, tolerating a wide range of countercations ([M(2.2.2)crypt]+, [M(18-crown-6)]+, [nBu4N]+; M = Na, K). Countercation identity does not significantly alter 13C NMR spectral signatures with [nBu4N]+ and Na+, suggesting minimal ion pairing in solution. IR spectroscopy reveals a significant decrease in CO stretching frequencies from MnI to Mn-I (ca. 240 cm-1), consistent with a drastic increase in electron density at Mn. State-of-the-art DFT calculations are in excellent agreement with the observed IR spectral data. Moreover, the Mn-I dianion behaves as a chemical reductant, smoothly releasing 1e- or 2e- to regenerate the oxidized Mn0 or MnI species in solution. The reducing potential of [Mn(CO)3(Ph2B(tBuNHC)2)]2- surpasses the naphthalenide anion in THF (-3.09 V) and represents one of the strongest isolable chemical redox agents.

5.
J Phys Chem Lett ; : 8065-8077, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083761

RESUMO

Efficient OLEDs need to quickly convert singlet and triplet excitons into photons. Molecules with an inverted singlet-triplet energy gap (INVEST) are promising candidates for this task. However, typical INVEST molecules have drawbacks like too low oscillator strengths and excitation energies. High-throughput screening could identify suitable INVEST molecules, but existing methods are problematic: The workhorse method TD-DFT cannot reproduce gap inversion, while wave function-based methods are too slow. This study proposes a state-specific method based on unrestricted Kohn-Sham DFT with common hybrid functionals. Tuned on the new INVEST15 benchmark set, this method achieves an error of less than 1 kcal/mol, which is traced back to error cancellation between spin contamination and dynamic correlation. Applied to the larger and structurally diverse NAH159 set in a black-box fashion, the method maintains a small error (1.2 kcal/mol) and accurately predicts gap signs in 83% of cases, confirming its robustness and suitability for screening workflows.

6.
ChemSusChem ; : e202400754, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819082

RESUMO

Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN"2 (N"=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N"AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that the double Ae-H-Ae bridged dimer (N"AeH)2 is kinetically more favorable in catalytic hydrogenation with H2, although rate-limited by the initial hydrogenolysis of AeN"2 to form the monomer N"AeH.

7.
Chemistry ; 30(43): e202401776, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735846

RESUMO

B(C6F5)3 and the corresponding anion [B(C6F5)4]- are ubiquitous in main group and transition metal chemistry. Known derivatives are generally limited to the incorporation of electron donating substituents. Herein we describe electrophilic fluorination and dearomatization of such species using XeF2 in the presence of BF3 or Lewis acidic cations. In this fashion the anions [HB(C6F5)3]-, [B(C6F5)4]- and [(C6F5)3BC≡NB(C6F5)3]-, are converted to [FB(C6F7)3]-, [B(C6F7)4]-, and [(C6F7)3BC≡NB(C6F7)3]-, respectively. Similarly, the borane adducts (L)B(C6F7)3 (L=MeCN, OPEt3) are produced. These rare examples of electrophilic attack of electron deficient rings proceed as [XeF][BF4] acts as a frustrated Lewis pair effecting fluorination and dearomatization of C6F5 rings.

8.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805556

RESUMO

In the framework of simplified quantum chemistry methods, we introduce the eXact integral simplified time-dependent density functional theory (XsTD-DFT). This method is based on the simplified time-dependent density functional theory (sTD-DFT), where all semi-empirical two-electron integrals are replaced by exact one- and two-center two-electron integrals, while other approximations from sTD-DFT are kept. The performance of this new parameter-free XsTD-DFT method was benchmarked on excited state and (non)linear response properties, including ultra-violet/visible absorption, first hyperpolarizability, and two-photon absorption (2PA). For a set of 77 molecules, the results from the XsTDA approach were compared to the TDA data. XsTDA/B3LYP excitation energies only deviate on average by 0.14 eV from TDA while drastically cutting computational costs by a factor of 20 or more depending on the energy threshold chosen. The absolute deviations of excitation energies with respect to the full scheme are decreasing with increasing system size, showing the suitability of XsTDA/XsTD-DFT to treat large systems. Comparing XsTDA and its predecessor sTDA, the new scheme generally improves excitation energies and oscillator strengths, in particular, for charge transfer states. TD-DFT first hyperpolarizability frequency dispersions for a set of push-pull π-conjugated molecules are faithfully reproduced by XsTD-DFT, while the previous sTD-DFT method provides redshifted resonance energy positions. Excellent performance with respect to the experiment is observed for the 2PA spectrum of the enhanced green fluorescent protein. The obtained robust accuracy similar to TD-DFT at a fraction of the computational cost opens the way for a plethora of applications for large systems and in high throughput screening studies.

9.
Angew Chem Int Ed Engl ; 63(29): e202405911, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669602

RESUMO

We describe a highly stereoconvergent radical epoxide allylation towards diastereomerically and enantiomerically enriched α-quaternary alcohols in two steps from olefins. Our approach combines the stereospecifity and enantioselectivity of the Shi epoxidation with the unprecedented Ti(III)-promoted intramolecular radical group transfer allylation of epoxides. A directional isomerization step via configurationally labile radical intermediates enables the selective preparation of all-carbon quaternary stereocenters in a unique fashion.

10.
Org Biomol Chem ; 22(18): 3668-3683, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38623758

RESUMO

Combined UV-vis and quantum chemical studies of the structural flexibility and tautomerism of 6-R-3-hydroxy-2-pyrazine carboxamides in solutions revealed that their keto-enol transformations are accompanied by the deprotonation of enol tautomers and the formation of the corresponding anionic species. Both the solvent and the 6-R substituent strongly influence the relative abundance of the above forms in solutions. Anions are not formed in 1,2-dichloroethane (DCE), but the probability of deprotonation in neutral water and N,N-dimethylformamide (DMF) increases in the order R = H < F < NO2. Only enol tautomers of all solutes are found in DCE. DMF stabilizes keto forms only moderately and assists much strongly in the deprotonation of all three compounds. Water tends to stabilize both keto tautomers and deprotonated anions: the keto form dominates in the case of R = H (antiviral drug T-1105), the anions are found exclusively for R = NO2, and the aqueous solution of another antiviral drug, favipiravir (R = F), contains both the keto tautomer and the anionic form. The results of quantum chemical free energy calculations are in agreement with the experimental observations.

11.
Phys Chem Chem Phys ; 26(18): 13884-13908, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661329

RESUMO

The elements of the p-block of the periodic table are of high interest in various chemical and technical applications like frustrated Lewis-pairs (FLP) or opto-electronics. However, high-quality benchmark data to assess approximate density functional theory (DFT) for their theoretical description are sparse. In this work, we present a benchmark set of 604 dimerization energies of 302 "inorganic benzenes" composed of all non-carbon p-block elements of main groups III to VI up to polonium. This so-called IHD302 test set comprises two classes of structures formed by covalent bonding and by weaker donor-acceptor (WDA) interactions, respectively. Generating reliable reference data with ab initio methods is challenging due to large electron correlation contributions, core-valence correlation effects, and especially the slow basis set convergence. To compute reference values for these dimerization reactions, after thorough testing, we applied a computational protocol using state-of-the-art explicitly correlated local coupled cluster theory termed PNO-LCCSD(T)-F12/cc-VTZ-PP-F12(corr.). It includes a basis set correction at the PNO-LMP2-F12/aug-cc-pwCVTZ level. Based on these reference data, we assess 26 DFT methods in combination with three different dispersion corrections and the def2-QZVPP basis set, five composite DFT approaches, and five semi-empirical quantum mechanical methods. For the covalent dimerizations, the r2SCAN-D4 meta-GGA, the r2SCAN0-D4 and ωB97M-V hybrids, and the revDSD-PBEP86-D4 double-hybrid functional are found to be the best-performing methods among the evaluated functionals of the respective class. However, since def2 basis sets for the 4th period are not associated to relativistic pseudo-potentials, we obtained significant errors in the covalent dimerization energies (up to 6 kcal mol-1) for molecules containing p-block elements of the 4th period. Significant improvements were achieved for systems containing 4th row elements by using ECP10MDF pseudopotentials along with re-contracted aug-cc-pVQZ-PP-KS basis sets introduced in this work with the contraction coefficients taken from atomic DFT (PBE0) calculations. Overall, the IHD302 set represents a challenge to contemporary quantum chemical methods. This is due to a large number of spatially close p-element bonds which are underrepresented in other benchmark sets, and the partial covalent bonding character for the WDA interactions. The IHD302 set may be helpful to develop more robust and transferable approximate quantum chemical methods in the future.

12.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511658

RESUMO

Conformer-rotamer sampling tool (CREST) is an open-source program for the efficient and automated exploration of molecular chemical space. Originally developed in Pracht et al. [Phys. Chem. Chem. Phys. 22, 7169 (2020)] as an automated driver for calculations at the extended tight-binding level (xTB), it offers a variety of molecular- and metadynamics simulations, geometry optimization, and molecular structure analysis capabilities. Implemented algorithms include automated procedures for conformational sampling, explicit solvation studies, the calculation of absolute molecular entropy, and the identification of molecular protonation and deprotonation sites. Calculations are set up to run concurrently, providing efficient single-node parallelization. CREST is designed to require minimal user input and comes with an implementation of the GFNn-xTB Hamiltonians and the GFN-FF force-field. Furthermore, interfaces to any quantum chemistry and force-field software can easily be created. In this article, we present recent developments in the CREST code and show a selection of applications for the most important features of the program. An important novelty is the refactored calculation backend, which provides significant speed-up for sampling of small or medium-sized drug molecules and allows for more sophisticated setups, for example, quantum mechanics/molecular mechanics and minimum energy crossing point calculations.

13.
Inorg Chem ; 63(11): 5052-5064, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38446045

RESUMO

A benchmark set for the computation of 207Pb nuclear magnetic resonance (NMR) chemical shifts is presented. The PbS50 set includes conformer ensembles of 50 lead-containing molecular compounds and their experimentally measured 207Pb NMR chemical shifts. Various bonding motifs at the Pb center with up to seven bonding partners are included. Six different solvents were used in the measurements. The respective shifts lie in the range between +10745 and -5030 ppm. Several calculation settings are assessed by evaluating computed 207Pb NMR shifts for the use with different density functional approximations (DFAs), relativistic approaches, treatment of the conformational space, and levels for geometry optimization. Relativistic effects were included explicitly with the zeroth order regular approximation (ZORA), for which only the spin-orbit variant was able to yield reliable results. In total, seven GGAs and three hybrid DFAs were tested. Hybrid DFAs significantly outperform GGAs. The most accurate DFAs are mPW1PW with a mean absolute deviation (MAD) of 429 ppm and PBE0 with an MAD of 446 ppm. Conformational influences are small as most compounds are rigid, but more flexible structures still benefit from Boltzmann averaging. Including explicit relativistic treatments such as SO-ZORA in the geometry optimization does not show any significant improvement over the use of effective core potentials (ECPs).

14.
J Phys Chem Lett ; 15(9): 2462-2469, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38407047

RESUMO

We present the Dynamic Radii Adjustment for COntinuum solvation (DRACO) approach, which employs precomputed atomic partial charges and coordination numbers of the solute atoms to improve the solute cavity. As such, DRACO is compatible with major solvation models, improving their performance significantly and robustly at virtually no extra cost, especially for charged solutes. Combined with the purely electrostatic CPCM and COSMO models, DRACO reduces the mean absolute deviation (MAD) of the solvation free energy by up to 4.5 kcal mol-1 (67%) for a large data set of polar and ionic solutes. Even in combination with the highly empirical universal solvation model (SMD), DRACO substantially reduces the MAD for charged solutes by up to 1.5 kcal mol-1 (39%), while neutral solutes are slightly improved (0.2 kcal mol-1 or 16%). We present an interface of DRACO with two computationally efficient atomic charge models that enables fully automated, out-of-the-box calculations with the widely used program packages Orca and TurboMole.

15.
J Chem Inf Model ; 64(3): 825-836, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38238264

RESUMO

The unique properties of lanthanoids and their diverse applications make them an indispensable part of modern research and industry. While the field has garnered attention, there remains a gap in available molecule data sets that facilitate both classical quantum chemistry calculations and the burgeoning field of machine learning in data science applications. This research addresses the need for a comprehensive data set that allows for a comparative analysis of various lanthanoids. The herein presented, curated data set includes 17269 monolanthanoid complexes derived from 1205 distinct ligand motifs. Structures encompass all 15 lanthanoids in the +3 oxidation state and exhibit molecular charges ranging from -1 to +3, including structures with a high spin multiplicity up to 8. Starting from lanthanum complexes, samples were processed with a permutation of the central lanthanoid atom, resulting in highly comparable subsets, facilitating comparative studies in which the influence of the lanthanoid can be investigated independently of ligand effects. The data set provides a broad range of features such as PBE0-D4/def2-SVP optimized geometries and optimization trajectories, while also covering ωB97M-V/def2-SVPD energies, rotational constants, dipole moments, highest occupied molecular orbital-lowest-unoccupied molecular orbital (HOMO-LUMO) energies, and Mulliken, Löwdin, and Hirshfeld population analyses. Additionally, coordination numbers, polarizabilities, and partial charges from D4, electronegativity equilibration (EEQ), GFN2-xTB, and charge extended Hückel (CEH) calculations are included. The data set is openly accessible and may serve as a basis for further investigations into the properties of lanthanoids.


Assuntos
Elementos da Série dos Lantanídeos , Modelos Moleculares , Ligantes , Teoria Quântica
16.
Phys Chem Chem Phys ; 26(6): 4870-4884, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38230684

RESUMO

As one of the most powerful analytical methods for molecular and solid-state structure elucidation, NMR spectroscopy is an integral part of chemical laboratories associated with a great research interest in its computational simulation. Particularly when heavy atoms are present, a relativistic treatment is essential in the calculations as these influence also the nearby light atoms. In this work, we present a Δ-machine learning method that approximates the contribution to 13C and 1H NMR chemical shifts that stems from spin-orbit (SO) coupling effects. It is built on computed reference data at the spin-orbit zeroth-order regular approximation (ZORA) DFT level for a set of 6388 structures with 38 740 13C and 64 436 1H NMR chemical shifts. The scope of the methods covers the 17 most important heavy p-block elements that exhibit heavy atom on the light atom (HALA) effects to covalently bound carbon or hydrogen atoms. Evaluated on the test data set, the approach is able to recover roughly 85% of the SO contribution for 13C and 70% for 1H from a scalar-relativistic PBE0/ZORA-def2-TZVP calculation at virtually no extra computational costs. Moreover, the method is transferable to other baseline DFT methods even without retraining the model and performs well for realistic organotin and -lead compounds. Finally, we show that using a combination of the new approach with our previous Δ-ML method for correlation contributions to NMR chemical shifts, the mean absolute NMR shift deviations from non-relativistic DFT calculations to experimental values can be halved.

17.
J Am Chem Soc ; 146(5): 2986-2996, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38263586

RESUMO

Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host-guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown.

18.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38265085
19.
Chem Commun (Camb) ; 60(8): 1031-1034, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38174434

RESUMO

The phosphino-phosphenium cation (PPC) [Ph3PPPh2][GaCl4] reacts as a frustrated Lewis pair to add across the NN bond of (tBuO2CN)2. In contrast, photolytical addition [Ph2ClPPPh2][GaCl4] to (RN)2 results in cleavage of the NN bond affording [Ph2P(µ-NR)2PPh2Cl][GaCl4] (R = Ph 2, C6H4Cl3). While the chloride of 2 is replaced with N3 or CN via reaction with Me3SiN3 or tBuNC respectively, reaction with (C6F5)2BH effects ring opening to give [HN(Ph)PPh2(µ-NPh)PPh2][GaCl4] 7. This reactivity demonstrates that PPCs behave as FLPs to effect either addition or cleavage of NN double bonds.

20.
J Comput Chem ; 45(7): 419-429, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37982322

RESUMO

A prerequisite for the computational prediction of molecular properties like conformational energies of biomolecules is a reliable, robust, and computationally affordable method usually selected according to its performance for relevant benchmark sets. However, most of these sets comprise molecules in the gas phase and do not cover interactions with a solvent, even though biomolecules typically occur in aqueous solution. To address this issue, we introduce a with explicit water molecules solvated version of a gas-phase benchmark set containing 196 conformers of 13 peptides and other relevant macrocycles, namely MPCONF196 [J. Rezác et al., JCTC 2018, 14, 1254-1266], and provide very accurate PNO-LCCSD(T)-F12b/AVQZ' reference values. The novel solvMPCONF196 benchmark set features two additional challenges beyond the description of conformers in the gas phase: conformer-water and water-water interactions. The overall best performing method for this set is the double hybrid revDSDPBEP86-D4/def2-QZVPP yielding conformational energies of almost coupled cluster quality. Furthermore, some (meta-)GGAs and hybrid functionals like B97M-V and ω B97M-D with a large basis set reproduce the coupled cluster reference with an MAD below 1 kcal mol - 1 . If more efficient methods are required, the composite DFT-method r 2 SCAN-3c (MAD of 1.2 kcal mol - 1 ) is a good alternative, and when conformational energies of polypeptides or macrocycles with more than 500-1000 atoms are in the focus, the semi-empirical GFN2-xTB or the MMFF94 force field (for very large systems) are recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...