RESUMO
The recovery of copper and other valuable metals had become increasingly strategic for the future of the global economy, particularly in regions lacking abundant mineral resources, such as most European countries. In this study, we investigated the viability of utilizing environmentally friendly, cost-effective, abundant and bio-based ligands, specifically carboxylic acids and their derivatives, for copper leaching in a low-temperature hydrometallurgical process. Our investigation focused on elucidating the impact of substituents in the α position of hydroxy-carboxylic acids on copper solubilization efficacy. Notably, hydroxy-carboxylic acids, like malic acid and lactic acid, were evidenced as particularly promising ligands for leaching copper from a custom-made multimetallic powder. By thoroughly characterizing the obtained complexes (Raman, UV-Vis) and by supporting the experimental efforts by a Design of Experiment (DoE) approach, we optimized the leaching process. The influence of experimental parameters such as pH, temperature, leaching time, and Cu/ligand molar ratio on process yield (determined through Inductively Coupled Plasma - Optical Emission Spectroscopy, ICP-OES, analysis) was thoroughly investigated. Additionally, we developed a subsequent copper recovery step by precipitating copper (II) hydroxide in an alkaline environment, guided by speciation diagrams tailored for each copper-ligand system.
RESUMO
Enclosed nanoscale volumes, i.e., confined spaces, represent a fascinating playground for the controlled synthesis of inorganic materials, albeit their role in determining the synthetic outcome is currently not fully understood. Herein, we address the synthesis of MoO3 nano- and microrods with hexagonal section in inverse miniemulsion droplets and batch conditions, evaluating the effects of spatial confinement offered by miniemulsion droplets on their crystallization. Several synthetic parameters were systematically screened and their effect on the crystal structure of h-MoO3, as well as on its size, size distribution and morphology, were investigated. Moreover, a direct insight on the crystallization pathway of MoO3 in both synthetic conditions and as a function of synthetic parameters was provided by an in situ time-resolved SAXS/WAXS study, that confirmed the role of miniemulsion confined space in altering the stepwise process of the formation of h-MoO3.
RESUMO
The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques with greatest sensitivity. In this study, the Raman technique was exploited for the determination of the local temperature as a non-contact technique and titania nanoparticles (NPs) were tested as nanothermometer Raman active material. Biocompatible titania NPs were synthesized following a combination of sol-gel and solvothermal green synthesis approaches, with the aim of obtaining pure anatase samples. In particular, the optimization of three different synthesis protocols allowed materials to be obtained with well-defined crystallite dimensions and good control over the final morphology and dispersibility. TiO2 powders were characterized by X-ray diffraction (XRD) analyses and room-temperature Raman measurements, to confirm that the synthesized samples were single-phase anatase titania, and using SEM measurements, which clearly showed the nanometric dimension of the NPs. Stokes and anti-Stokes Raman measurements were collected, with the excitation laser at 514.5 nm (CW Ar/Kr ion laser), in the temperature range of 293-323 K, a range of interest for biological applications. The power of the laser was carefully chosen in order to avoid possible heating due to the laser irradiation. The data support the possibility of evaluating the local temperature and show that TiO2 NPs possess high sensitivity and low uncertainty in the range of a few degrees as a Raman nanothermometer material.
RESUMO
Nanoporosity is clearly beneficial for the performance of heterogeneous catalysts. Although exsolution is a modern method to design innovative catalysts, thus far it is predominantly studied for sintered matrices. A quantitative description of the exsolution of Ni nanoparticles from nanoporous perovskite oxides and their effective application in the biogas dry reforming is here presented. The exsolution process is studied between 500 and 900 °C in nanoporous and sintered La0.52 Sr0.28 Ti0.94 Ni0.06 O3±Î´ . Using temperature-programmed reduction (TPR) and X-ray absorption spectroscopy (XAS), it is shown that the faster and larger oxygen release in the nanoporous material is responsible for twice as high Ni reduction than in the sintered system. For the nanoporous material, the nanoparticle formation mechanism, studied by in situ TEM and small-angle X-ray scattering (SAXS), follows the classical nucleation theory, while on sintered systems also small endogenous nanoparticles form despite the low Ni concentration. Biogas dry reforming tests demonstrate that nanoporous exsolved catalysts are up to 18 times more active than sintered ones with 90% of CO2 conversion at 800 °C. Time-on-stream tests exhibit superior long-term stability (only 3% activity loss in 8 h) and full regenerability (over three cycles) of the nanoporous exsolved materials in comparison to a commercial Ni/Al2 O3 catalyst.
RESUMO
Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.
Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas/química , Coloides/química , Solventes , SemicondutoresRESUMO
Invited for this month cover is the group of Teresa Gatti at the Justus Liebig University (JLU) in Giessen, Germany, the group of Federico Bella at Politecnico di Torino (POLITO), Italy, and the group of Francesco Lamberti at the University of Padova (UNIPD), also in Italy. The image shows how waste tires can be converted in a conductive carbon powder that undergoes a green processing step to produce carbon electrodes for lead-free perovskite solar cells. Similar devices can be employed to harvest indoor light in order to power the Internet of Things (IoT) ecosystem. The Research Article itself is available at 10.1002/cssc.202201590.
Assuntos
Carbono , Ultrassom , Humanos , Ecossistema , EletrodosRESUMO
Costs and toxicity concerns are at the center of a heated debate regarding the implementation of perovskite solar cells (PSCs) into commercial products. The first bottleneck could be overcome by eliminating the top metal electrode (generally gold) and the underlying hole transporting material and substituting both with one single thick layer of conductive carbon, as in the so-called carbon-based PSCs (C-PSCs). The second issue, related to the presence of lead, can be tackled by resorting to other perovskite structures based on less toxic metallic components. An interesting case is that of the double perovskite Cs2 AgBiBr6 , which at present still lacks the outstanding optoelectronic performances of the lead-based counterparts but is very stable to environmental factors. In this work, the processing of carbon electrodes onto Cs2 AgBiBr6 -based C-PSCs was reported, starting from an additive-free isopropanol ink of a carbon material obtained from the hydrothermal recycling of waste tires and employing a high-throughput ultrasonic spray coating method in normal environmental conditions. Through this highly sustainable approach that ensures a valuable step from an end-of-life to an end-of-waste status for used tires, devices were obtained delivering a record open circuit voltage of 1.293â V, which might in the future represent ultra-cheap solutions to power the indoor Internet of Things ecosystem.
Assuntos
Carbono , Ultrassom , Ecossistema , EletrodosRESUMO
In this paper, a highly effective and scalable polyol-based modified procedure is reported, yielding shape-controlled Pd nanoparticles (NPs) formed via two distinct growth mechanisms as a function of apparent pH. Starting from tetraethylammonium tetrahydroxypalladate (TEA)2[Pd(OH)4], a halide-free precursor, the resulting shape of the NPs ranged from highly defective worm-like nanostructures to well-defined polyhedra (tetrahedra, octahedra and 5-fold twins) as shown by TEM, HRTEM, and STEM. The effect of the different synthesis parameters was thoroughly investigated, finding that apparent pH - modulated by adding diluted HNO3 - is the key parameter in determining the final size and shape of Pd NPs, whose evolution was followed during the reaction. A rational explanation of the observed shape modification as a function of apparent pH was proposed. The as-prepared Pd NPs, once dried, were analysed by means of XRD. DRIFT spectroscopy was used to show how CO binds on the Pd NPs after deposition on γ-Al2O3 as catalytic support.
RESUMO
The precise detection of the toxic gas H2 S requires reliable sensitivity and specificity of sensors even at minute concentrations of as low as 10â ppm, the value corresponding to typical exposure limits. CuO can be used for H2 S dosimetry, based on the formation of conductive CuS and the concomitant significant increase in conductance. In theory, at elevated temperature the reaction is reversed and CuO is formed, ideally enabling repeated and long-term use of one sensor. Yet, the performance of CuO tends to drop upon cycling. Utilizing defined CuO nanorods we thoroughly elucidated the associated detrimental chemical changes directly on the sensors, by Raman and electron microscopy analysis of each step during sensing (CuOâCuS) and regeneration (CuSâCuO) cycles. We find the decrease in the sensing performance is mainly caused by the irreversible formation of CuSO4 during regeneration. The findings allowed us to develop strategies to reduce CuSO4 formation and thus to substantially maintain the sensing stability even for repeated cycles. We achieved CuO-based dosimeters possessing a response time of a few minutes only, even for 10â ppm H2 S, and prolonged life-time.
Assuntos
Cobre , NanotubosRESUMO
Zr-based oxoclusters MxOy(OR)w(OOR')z are promising catalysts for the activation of hydrogen peroxide. However, they need to be integrated into suitable matrices to increase their hydrolytic stability and allow for their recovery after use. Polymeric materials can be successfully employed for this aim, since they modify the properties of the resulting hybrid materials, in terms of polarity and chemical affinity for the substrates, improving the catalytic activity. Herein, we report the synthesis of different acrylic polymers based on various co-monomers (methyl methacrylate (MMA), 2,2,2-trifluoroethylmethacrylate (TFMA) and 3-methacryloxypropyltrimethoxylsilane (MAPTMS)) covalently cross-linked by a Zr4-based oxocluster, whose composition was tuned to optimise the catalytic oxidation of methyl p-tolyl sulphide. To assess their properties and stability, the materials were characterised via Fourier Transform Infrared (FT-IR) and Raman spectroscopies, Thermogravimetric Analysis (TGA), Solid-State NMR (SS-NMR) and X-Ray Absorption Spectroscopies XAS, before and after catalytic turnover.
RESUMO
Thermochromic dynamic cool materials present a reversible change of their properties wherein by increasing the temperature, the reflectance, conductivity, and transmittance change due to a reversible crystalline phase transition. In particular, vanadium (IV) dioxide shows a reversible phase transition, accompanied by a change in optical properties, from monoclinic VO2(M1) to tetragonal VO2(R). In this paper, we report on a systematic exploration of the parameters for the synthesis of vanadium dioxide VO2(M1) via an easy, sustainable, reproducible, fast, scalable, and low-cost hydrothermal route without hazardous chemicals, followed by an annealing treatment. The metastable phase VO2(B), obtained via a hydrothermal route, was converted into the stable VO2(M1), which shows a metal-insulator transition (MIT) at 68 °C that is useful for different applications, from energy-efficient smart windows to dynamic concrete. Within this scenario, a further functionalization of the oxide nanostructures with tetraethyl orthosilicate (TEOS), characterized by an extreme alkaline environment, was carried out to ensure compatibility with the concrete matrix. Structural properties of the synthesized vanadium dioxides were investigated using temperature-dependent X-ray Diffraction analysis (XRD), while compositional and morphological properties were assessed using Scanning Electron Microscopy, Energy Dispersive X-ray Analysis (SEM-EDX), and Transmission Electron Microscopy (TEM). Differential Scanning Calorimetry (DSC) analysis was used to investigate the thermal behavior.
RESUMO
Sulfur particles with a conductive polymer coating of poly(3,4-ethylene dioxythiophene) "PEDOT" were prepared by dielectric barrier discharge (DBD) plasma technology under atmospheric conditions (low temperature, ambient pressure). We report a solvent-free, low-cost, low-energy-consumption, safe, and low-risk process to make the material development and production compatible for sustainable technologies. Different coating protocols were developed to produce PEDOT-coated sulfur powders with electrical conductivity in the range of 10-8-10-5 S/cm. The raw sulfur powder (used as the reference) and (low-, optimum-, high-) PEDOT-coated sulfur powders were used to assemble lithium-sulfur (Li-S) cells with a high sulfur loading of â¼4.5 mg/cm2. Long-term galvanostatic cycling at C/10 for 100 cycles showed that the capacity fade was mitigated by â¼30% for the cells containing the optimum-PEDOT-coated sulfur in comparison to the reference Li-S cells with raw sulfur. Rate capability, cyclic voltammetry, and electrochemical impedance analyzes confirmed the improved behavior of the PEDOT-coated sulfur as an active material for lithium-sulfur batteries. The Li-S cells containing optimum-PEDOT-coated sulfur showed the highest reproducibility of their electrochemical properties. A wide variety of bulk and surface characterization methods including conductivity analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and NMR spectroscopy were used to explain the chemical features and the superior behavior of Li-S cells using the optimum-PEDOT-coated sulfur material. Moreover, postmortem [SEM and Brunauer-Emmett-Teller (BET)] analyzes of uncoated and coated samples allowed us to exclude any significant effect at the electrode scale even after 70 cycles.
RESUMO
The design of nanoporous perovskite oxides is considered an efficient strategy to develop performing, sustainable catalysts for the conversion of methane. The dependency of nanoporosity on the oxygen defect chemistry and the catalytic activity of perovskite oxides toward CH4 and CO oxidation was studied here. A novel colloidal synthesis route for nanoporous, high-temperature stable SrTi0.65Fe0.35O3-δ with specific surface areas (SSA) ranging from 45 to 80 m2/g and pore sizes from 10 to 100 nm was developed. High-temperature investigations by in situ synchrotron X-ray diffraction (XRD) and TG-MS combined with H2-TPR and Mössbauer spectroscopy showed that the porosity improved the release of surface oxygen and the oxygen diffusion, whereas the release of lattice oxygen depended more on the state of the iron species and strain effects in the materials. Regarding catalysis, light-off tests showed that low-temperature CO oxidation significantly benefitted from the enhancement of the SSA, whereas high-temperature CH4 oxidation is influenced more by the dioxygen release. During isothermal long-term catalysis tests, however, the continuous oxygen release from large SSA materials promoted both CO and CH4 conversion. Hence, if SSA maximization turned out to efficiently improve low-temperature and long-term catalysis applications, the role of both reducible metal center concentration and crystal structure cannot be completely ignored, as they also contribute to the perovskite oxygen release properties.
RESUMO
Circular economy is considered a new chance to build a more sustainable world from both the social and the economic point of view. In this Essay, the possible contribution of inorganic chemistry towards a smooth transition to circularity in inorganic materials design and production is discussed by adopting an interdisciplinary approach.
RESUMO
The biorecognition-based control of attachment/detachment of MCF-7 cancer cells from polymer-coated surfaces is demonstrated. A glass surface is coated with a thermoresponsive statistical copolymer of poly(N-isopropylacrylamide-co-acrylamide) [p(NIPAm-co-Am)], which is end-capped with the Gly-Arg-Gly-Asp-Ser (GRGDS) peptide, and the hydrophilic polymer poly(ethylene glycol) (PEG). Below the lower critical solution temperature (LCST) of p(NIPAm-co-Am) (38 °C), the copolymers are in the extended conformation, allowing for accessibility of the GRGDS peptides to membrane-associated integrins thus enabling cell attachment. Above the LCST, the p(NIPAm-co-Am) polymers collapse into globular conformations, resulting in the shielding of the GRGDS peptides into the PEG brush with consequent inaccessibility to cell-surface integrins, causing cell detachment. The surface coating is carried out by a multi-step procedure that included: glass surface amination with 3-aminopropyltriethoxysilane; reaction of mPEG5kDa -N-hydroxysuccinimide (NHS) and p(NIPam-co-Am)15.1kDa -bis-NHS with the surface aminopropyl groups and conjugation of GRGDS to the carboxylic acid termini of p(NIPam-co-Am)15.1kDa -COOH. A range of spectrophotometric, surface, and microscopy assays confirmed the identity of the polymer-coated substrates. Competition studies prove that MCF-7 cancer cells are attached via peptide recognition at the coated surfaces according to the mPEG5kDa /p(NIPam-co-Am)15.1kDa -GRGDS molar ratio. These data suggest the system can be exploited to modulate cell integrin/GRGDS binding for controlled cell capture and release.
Assuntos
Temperatura , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Adesão Celular , Contagem de Células , Fluorescência , Vidro/química , Humanos , Células MCF-7 , Microscopia de Força Atômica , Oligopeptídeos/química , Espectroscopia Fotoeletrônica , Polietilenoglicóis/química , Propilaminas/química , Silanos/química , Succinimidas/química , Propriedades de SuperfícieRESUMO
Genetically modified vaccinia viruses (VACVs) have been shown to possess profound oncolytic capabilities. However, tumor cell resistance to VACVs may endanger broad clinical success. Using cell mass assays, viral replication studies, and fluorescence microscopy, we investigated primary resistance phenomena of cell lines of the NCI-60 tumor cell panel to GLV-1h94, a derivative of the Lister strain of VACV, which encodes the enzyme super cytosine deaminase (SCD) that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). After treatment with GLV-1h94 alone, only half of the cell lines were defined as highly susceptible to GLV-1h94-induced oncolysis. When adding 5-FC, 85% of the cell lines became highly susceptible to combinatorial treatment; none of the tested tumor cell lines exhibited a "high-grade resistance" pattern. Detailed investigation of the SCD prodrug system suggested that the cytotoxic effect of converted 5-FU is directed either against the cells or against the virus particles, depending on the balance between cell line-specific susceptibility to GLV-1h94-induced oncolysis and 5-FU sensitivity. The data provided by this work underline that cellular resistance against VACV-based virotherapy can be overcome by virus-encoded prodrug systems. Phase I/II clinical trials are recommended to further elucidate the enormous potential of this combination therapy.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Engenharia Genética/métodos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vaccinia virus/genética , Antineoplásicos/toxicidade , Morte Celular , Linhagem Celular Tumoral , Terapia Combinada/métodos , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Flucitosina/farmacocinética , Fluoruracila/toxicidade , Humanos , Vírus Oncolíticos/enzimologia , Pró-Fármacos , Vaccinia virus/enzimologia , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
The room-temperature controlled crystallization of monodispersed ZnS nanoparticles (average size of 5 nm) doped with luminescent ions (such as Mn2+, Eu3+, Sm3+, Nd3+, and Yb3+) was achieved via a microfluidic approach. The preparation did not require any stabilizing ligands or surfactants, minimizing potential sources of impurities. The synthesized nanomaterials were characterized from a structural (XRD and XAS at lanthanide L3 edges), morphological (TEM), and compositional (XPS, ICP-MS) perspective, giving complementary information on the materials' features. In view of potential applications in the field of optical bioimaging, the optical emission properties of the doped nanoparticles were assessed, and samples showed strong luminescent properties while being less affected by self-quenching mechanisms. Furthermore, in vitro cytotoxicity experiments were conducted, showing no negative effects and evidencing the appeal of the synthesized materials for potential applications in the field of optical bioimaging.
Assuntos
Técnicas Analíticas Microfluídicas , Nanopartículas/química , Imagem Óptica , Sulfetos/química , Elementos de Transição/química , Compostos de Zinco/química , Células A549 , Cristalização , Humanos , Luminescência , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas , Espectroscopia por Absorção de Raios XRESUMO
At Low Temperature is the theme of this Special Issue on solution route approaches to oxide functional nanoscale materials This Editorial looks at the scope of, and background to the topic.
RESUMO
The controlled nucleation and crystallization of small pure sphalerite ZnS nanoparticles was achieved under batch and continuous flow conditions at low temperature, in water and without the use of any stabilizing ligand. The obtained nanoparticles displayed a narrow size distribution and high specific surface area. Moreover, the synthesis was suitable to directly obtain stable water-based suspensions and the products were found to be active photocatalysts for the hydrogen evolution reaction.
RESUMO
As an introduction to this themed issue, a critically selected overview of recent progress on the topic of solution methods for the low-temperature crystallization of nanoscale oxide materials is presented. It is focused on the low-temperature solution processing of oxide nanostructures and thin films. Benefits derived from these methods span from minimizing the environmental impact to reducing the fabrication costs. In addition, this topic is regarded as a key objective in the area because it offers a unique opportunity for the use of these materials in areas like flexible electronics, energy conversion and storage, environmental sciences, catalysis, or biomedicine.