Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675662

RESUMO

Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.

2.
Toxics ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393198

RESUMO

The recovery and recycling of metals that generate toxic ions in the environment is of particular importance, especially when these are tungsten and, in particular, thorium. The radioactive element thorium has unexpectedly accessible domestic applications (filaments of light bulbs and electronic tubes, welding electrodes, and working alloys containing aluminum and magnesium), which lead to its appearance in electrical and electronic waste from municipal waste management platforms. The current paper proposes the simultaneous recovery of waste containing tungsten and thorium from welding electrodes. Simultaneous recovery is achieved by applying a hybrid membrane electrolysis technology coupled with nanofiltration. An electrolysis cell with sulphonated polyether-ether-ketone membranes (sPEEK) and a nanofiltration module with chitosan-polypropylene membranes (C-PHF-M) are used to carry out the hybrid process. The analysis of welding electrodes led to a composition of W (tungsten) 89.4%; Th 7.1%; O2 2.5%; and Al 1.1%. Thus, the parameters of the electrolysis process were chosen according to the speciation of the three metals suggested by the superimposed Pourbaix diagrams. At a constant potential of 20.0 V and an electrolysis current of 1.0 A, the pH is varied and the possible composition of the solution in the anodic workspace is analyzed. Favorable conditions for both electrolysis and nanofiltration were obtained at pH from 6 to 9, when the soluble tungstate ion, the aluminum hydroxide, and solid thorium dioxide were formed. Through the first nanofiltration, the tungstate ion is obtained in the permeate, and thorium dioxide and aluminum hydroxide in the concentrate. By adding a pH 13 solution over the two precipitates, the aluminum is solubilized as sodium aluminate, which will be found after the second nanofiltration in the permeate, with the thorium dioxide remaining integrally (within an error of ±0.1 ppm) on the C-PHF-M membrane.

3.
Membranes (Basel) ; 13(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37755188

RESUMO

Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in the removal, recovery and recycling of thorium from industrial residues reaching municipal waste-processing platforms. The paper includes a short introduction on the interest shown in this element, a weak radioactive metal, followed by highlighting some common (domestic) uses. In a distinct but concise section, the bio-medical impact of thorium is presented. The classic technologies for obtaining thorium are concentrated in a single schema, and the speciation of thorium is presented with an emphasis on the formation of hydroxo-complexes and complexes with common organic reagents. The determination of thorium is highlighted on the basis of its radioactivity, but especially through methods that call for extraction followed by an established electrochemical, spectral or chromatographic method. Membrane processes are presented based on the electrochemical potential difference, including barro-membrane processes, electrodialysis, liquid membranes and hybrid processes. A separate sub-chapter is devoted to proposals and recommendations for the use of membranes in order to achieve some progress in urban mining for the valorization of thorium.

4.
Membranes (Basel) ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984671

RESUMO

Melatonin is the hormone that focuses the attention of the researchers in the medical, pharmaceutical, materials, and membranes fields due to its multiple biomedical implications. The variety of techniques and methods for the controlled release of melatonin is linked to the multitude of applications, among which sports medicine occupies a special place. This paper presents the preparation and characterization of composite membranes based on chitosan (Chi) and sulfonated ethylene-propylene-diene terpolymer (sEPDM). The membranes were obtained by controlled vacuum evaporation from an 8% sEPDM solution in toluene (w/w), in which chitosan was dispersed in an ultrasonic field (sEPDM:Chi = 1:1, w/w). For the comparative evaluation of the membranes' performances, a melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer (Mel:Chi:sEPDM = 0.5:0.5:1.0, w/w/w) test membrane was made. The prepared membranes were morphologically and structurally characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy analysis (EDAX), thermal analysis (TG, DSC), thermal analysis coupled with chromatography and infrared analysis, and contact angle measurements, but also from the point of view of performance in the process of transport and release of melatonin in dedicated environments (aqueous solutions with controlled pH and salinity). The prepared membranes can release melatonin in amounts between 0.4 mg/cm2·per day (sEPDM), 1.6 mg/ cm2·per day (Chi/sEPDM), and 1.25 mg/cm2·per day (Mel/Chi/SEPDM).

5.
Membranes (Basel) ; 13(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36984736

RESUMO

This paper presents the preparation and characterization of composite membranes based on chitosan (Chi), sulfonated ethylene-propylene-diene terpolymer (sEPDM), and polypropylene (PPy), and designed to capture hydrogen sulfide. The Chi/sEPDM/PPy composite membranes were prepared through controlled evaporation of a toluene dispersion layer of Chi:sEPDM 1;1, w/w, deposited by immersion and under a slight vacuum (100 mmHg) on a PPy hollow fiber support. The composite membranes were characterized morphologically, structurally, and thermally, but also from the point of view of their performance in the process of hydrogen sulfide sequestration in an acidic media solution with metallic ion content (Cu2+, Cd2+, Pb2+, and/or Zn2+). The operational parameters of the pertraction were the pH, pM, matrix gas flow rate, and composition. The results of pertraction from synthetic gases mixture (nitrogen, methane, carbon dioxide) indicated an efficient removal of hydrogen sulfide through the prepared composite membranes, as well as its immobilization as sulfides. The sequestration and the recuperative separation, as sulfides from an acid medium, of the hydrogen sulfide reached up to 96%, decreasing in the order: CuS > PbS > CdS > ZnS.

6.
Membranes (Basel) ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295782

RESUMO

Liquid membranes based on nanoparticles follow a continuous development, both from obtaining methods and characterization of techniques points of view. Lately, osmium nanoparticles have been deposited either on flat membranes, with the aim of initiating some reaction processes, or on hollow fiber membranes, with the aim of increasing the contact surface with the phases of the membrane system. This paper presents the obtainment and characterization of a liquid membrane based on osmium nanoparticles (Os-NP) dispersed in ndecanol (nDol) for the realization of a membrane system with a large contact surface between the phases, but without using a liquid membrane support. The dispersion of osmium nanoparticles in n-decanol is carried out by the method of reducing osmium tetroxide with 1-undecenoic acid (UDA). The resulting membrane was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy analysis (EDAX), thermoanalysis (TG, DSC), Fourier transform infra-red (FTIR) spectroscopy and dynamic light scattering (DLS). In order to increase the mass transfer surface, a design for the membrane system was realized with the dispersion of the membrane through the receiving phase and the dispersion of the source phase through the membrane (DBLM-dispersion bulk liquid membrane). The process performance was tested for the reduction of p-nitrophenol (pNP) from the source phase, using sodium tetra-borohydride (NaBH4), to p-aminophenol (pAP), which was transported and collected in the receiving phase. The obtained results show that membranes based on the dispersion of osmium nanoparticles in n-decanol can be used with an efficiency of over 90% for the reduction of p-nitrophenol and the separation of p-aminophenol.

7.
Membranes (Basel) ; 12(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135852

RESUMO

The development of new composite membranes is required to separate chemical species from aggressive environments without using corrective reagents. One such case is represented by the high hydrochloric acid mixture (very low pH and pCl) that contains mixed metal ions, or that of copper, cadmium, zinc and lead ions in a binary mixture (Cu-Zn and Cd-Pb) or quaternary mixture. This paper presents the obtaining of a composite membrane chitosan (Chi)-sulfonated poly (ether ether ketone) (sPEEK)-polypropylene hollow fiber (Chi/sPEEK/PPHF) and its use in the separation of binary or quaternary mixtures of copper, cadmium, zinc, and lead ions by nanofiltration and pertraction. The obtained membranes were morphologically and structurally characterized using scanning electron microscopy (SEM), high resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermogravimetric analysis, and differential scanning calorimetry (TGA-DSC), but also used in preliminary separation tests. Using the ion solutions in hydrochloric acid 3 mol/L, the separation of copper and zinc or cadmium and lead ions from binary mixtures was performed. The pertraction results were superior to those obtained by nanofiltration, both in terms of extraction efficiency and because at pertraction, the separate cation was simultaneously concentrated by an order of magnitude. The mixture of the four cations was separated by nanofiltration (at 5 bars, using a membrane of a 1 m2 active area) by varying two operational parameters: pH and pCl. Cation retention could reach 95% when adequate values of operational parameters were selected. The paper makes some recommendations for the use of composite membranes, chitosan (Chi)-sulfonated poly (ether ether ketone) (sPEEK)-polypropylene hollow fiber (Chi/sPEEK/PPHF), so as to obtain the maximum possible retention of the target cation.

8.
Membranes (Basel) ; 12(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736264

RESUMO

The bio-medical benefits of silver ions and 10-undecenoic acid in various chemical-pharmaceutical preparations are indisputable, thus justifying numerous research studies on delayed and/or controlled release. This paper presents the effect of the polymer matrix in the simultaneous release of silver ions and 10-undecenoic acid in an aqueous medium of controlled pH and ionic strength. The study took into consideration polymeric matrices consisting of cellulose acetate (CA) and polysulfone (PSf), which were impregnated with oxide nanoparticles containing silver and 10-undecenoic acid. The studied oxide nanoparticles are nanoparticles of iron and silver oxides obtained by an accessible electrochemical method. The obtained results show that silver can be released, simultaneously with 10-undecenoic acid, from an impregnated polymeric membrane, at concentrations that ensure the biocidal and fungicidal capacity. Concentrations of active substances can be controlled by choosing the polymer matrix or, in some cases, by changing the pH of the target medium. In the studied case, higher concentrations of silver ions are released from the polysulfone matrix, while higher concentrations of 10-undecenoic acid are released from the cellulose acetate matrix. The results of the study show that a correlation can be established between the two released target substances, which is dependent on the solubility of the organic compound in the aqueous medium and the interaction of this compound with the silver ions. The ability of 10-undecenoic acid to interact with the silver ion, both through the carboxyl and alkene groups, contributes to the increase in the content of the silver ions transported in the aqueous medium.

9.
Membranes (Basel) ; 12(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35448335

RESUMO

Regardless of the type of liquid membrane (LM) (Bulk Liquid Membranes (BLM), Supported Liquid Membranes (SLM) or Emulsion Liquid Membranes (ELM)), transport and separation of chemical species are conditioned by the operational (OP) and constructive design parameters (DP) of the permeation module. In the present study, the pH of the aqueous source phase (SP) and receiving phase (RP) of the proposed membrane system were selected as operational parameters. The mode of contacting the phases was chosen as the convective transport generator. The experiments used BLM-type membranes with spheres in free rotation as film contact elements of the aqueous phases with the membrane. The target chemical species were selected in the range of phenol derivatives (PD), 4−nitrophenol (NP), 2,4−dichlorophenol (DCP) and 2,4−dinitrophenol (DNP), all being substances of technical-economic and environmental interest. Due to their acid character, they allow the evaluation of the influence of pH as a determining operational parameter of transport and separation through a membrane consisting of n−octanol or n−decanol (n−AlcM). The comparative study performed for the transport of 4−nitrophenol (NP) showed that the module based on spheres (Ms) was more performant than the one with phase dispersion under the form of droplets (Md). The sphere material influenced the transport of 4−nitrophenol (NP). The transport module with glass spheres (Gl) was superior to the one using copper spheres (Cu), but especially with the one with steel spheres (St). In all the studied cases, the sphere-based module (Ms) had superior transport results compared to the module with droplets (Md). The extraction efficiency (EE) and the transport of 2,4−dichlorophenol (DCP) and 2,4−dinitrophenol (DNP), studied in the module with glass spheres, showed that the two phenolic derivatives could be separated by adjusting the pH of the source phase. At the acidic pH of the source phase (pH = 2), the two derivatives were extracted with good results (EE > 90%), while for pH values ranging from 4 to 6, they could be separated, with DCP having doubled separation efficiency compared to DNP. At a pH of 8 in the source phase, the extraction efficiency halved for both phenolic compounds.

10.
Membranes (Basel) ; 12(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35207110

RESUMO

Liquid membranes usually have three main constructive variants: bulk liquid membranes (BLM), supported liquid membranes (SLM) and emulsion liquid membranes (ELM). Designing hybrid variants is very topical, with the main purpose of increasing the flow of substance through the membrane but also of improving the selectivity. This paper presents the operational limits of some kind of hybrid membrane constituted as a bulk liquid membrane (BLM), but which works by dispersing the aqueous source (SP) and receiving (RP) phases, with the membrane itself being a dispersion of nanoparticles in an organic solvent (NP-OSM). The approached operational parameters were the volume of phases of the hybrid membrane system, the thickness of the liquid membrane, the working temperature, the flow of aqueous phases, the droplet size of the aqueous phases dispersed across the membrane, the nature and concentration of nanoparticles in the membrane, the pH difference between the aqueous phases, the nature of the organic solvent, the salt concentration in the aqueous phases and the nature of transported chemical species. For this study, silver ion (SI) and p-nitrophenol (PNP) were chosen as transportable chemical species, the n-aliphatic alcohols (C6…C12) as membrane organic solvents, 10-undecenoic acid (UDAc) and 10-undecylenic alcohol (UDAl) as carriers and magnetic iron oxides as nanoparticles dispersed in the membrane phase. Under the experimentally established operating conditions, separation efficiencies of over 90% were obtained for both ionic and molecular chemical species (silver ions and p-nitrophenol). The results showed the possibility of increasing the flow of transported chemical species by almost 10 times for the silver ion and approximately 100 times for p-nitrophenol, through the appropriate choice of operational parameters, but they also exposed their limits in relation to the stability of the membrane system.

11.
Membranes (Basel) ; 11(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34940437

RESUMO

This paper presents a transport and recovery of silver ions through bulk liquid membranes based on n-decanol using as carriers 10-undecylenic acid and 10-undecylenyl alcohol. The transport of silver ions across membranes has been studied in the presence of two types of magnetic oxide nanoparticles obtained by the electrochemical method with iron electrodes in the electrolyte with and without silver ions, which act as promoters of turbulence in the membrane. Separation of silver ions by bulk liquid membranes using 10-undecylenic acid and 10-undecylenyl alcohol as carriers were performed by comparison with lead ions. The configuration of the separation module has been specially designed for the chosen separation process. Convective-generating magnetic nanoparticles were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermal gravimetric analysis (TGA), differential scanning calorimetry and magnetization. The process performance (flux and selectivity) was tested were tested for silver ion transport and separation through n-decanol liquid membranes with selected carriers. Under the conditions of the optimized experimental results (pH = 7 of the source phase, pH = 1 of the receiving phase, flow rate of 30 mL/min for the source phase and 9 mL/min for the receiving phase, 150 rot/min agitation of magnetic nanoparticles) separation efficiencies of silver ions of over 90% were obtained for the transport of undecenoic acid and about 80% for undecylenyl alcohol.

12.
Nanomaterials (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34684968

RESUMO

Composite membranes play a very important role in the separation, concentration, and purification processes, but especially in membrane reactors and membrane bioreactors. The development of composite membranes has gained momentum especially through the involvement of various nanoparticles, polymeric, oxide, or metal, that have contributed to increasing their reactivity and selectivity. This paper presents the preparation and characterization of an active metal nanoparticle-support polymer type composite membrane, based on osmium nanoparticles obtained in situ on a polypropylene hollow fiber membrane. Osmium nanoparticles are generated from a solution of osmium tetroxide in tert-butyl alcohol by reduction with molecular hydrogen in a contactor with a polypropylene membrane. The composite osmium-polypropylene hollow fiber obtained membranes (Os-PPM) were characterized from the morphological and structural points of view: scanning electron microscopy (SEM), high resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), X-ray diffraction analysis (XRD), Fourier transform Infrared (FTIR) spectroscopy, thermal gravimetric analysis, and differential scanning calorimetry (TGA, DSC). The process performance was tested in a redox process of p-nitrophenol and 10-undecylenic (10-undecenoic) acid, as a target substance of biological or biomedical interest, in solutions of lower aliphatic alcohols in a membrane contactor with a prepared composite membrane. The characteristics of osmium nanoparticles-polypropylene hollow fiber membranes open the way to biological and biotechnological applications. These membranes do not contaminate the working environment, operate at relatively low temperatures, provide a large contact area between reactants, allow successive oxidation and reduction operations in the same module, and help to recover the reaction mass by ultrafiltration. The results obtained show that the osmium-polypropylene composite membrane allows the reduction of p-nitrophenol or the oxidation of 10-undecylenic acid, the conversion depending on the concentration in the lower aliphatic alcohol, the nature of the lower aliphatic alcohol, and the oxidant or reducing flow through the membrane contactor.

13.
Membranes (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436396

RESUMO

Membranes are associated with the efficient processes of separation, concentration and purification, but a very important aspect of them is the realization of a reaction process simultaneously with the separation process. From a practical point of view, chemical reactions have been introduced in most membrane systems: with on-liquid membranes, with inorganic membranes or with polymeric and/or composite membranes. This paper presents the obtaining of polymeric membranes containing metallic osmium obtained in situ. Cellulose acetate (CA), polysulfone (PSf) and polypropylene hollow fiber membranes (PPM) were used as support polymer membranes. The metallic osmium is obtained directly onto the considered membranes using a solution of osmium tetroxide (OsO4), dissolved in tert-butyl alcohol (t-Bu-OH) by reduction with molecular hydrogen. The composite osmium-polymer (Os-P)-obtained membranes were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), energy-dispersive spectroscopy analysis (EDAX), Fourier Transform Infra-Red (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The process performance was tested for reduction of 5-nitrobenzimidazole to 5-aminobenzimidazole with molecular hydrogen. The paper presents the main aspects of the possible mechanism of transformation of 5-nitrobenzimidazole to 5-aminobenzimidazole with hydrogen gas in the reaction system with osmium-polymer membrane (Os-P).

14.
Membranes (Basel) ; 11(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203680

RESUMO

The membranes and membrane processes have succeeded in the transition from major technological and biomedical applications to domestic applications: water recycling in washing machines, recycling of used cooking oil, recovery of gasoline vapors in the pumping stations or enrichment of air with oxygen. In this paper, the neutralization of condensation water and the retention of aluminum from thermal power plants is studied using ethylene propylene diene monomer sulfonated (EPDM-S) membranes containing magnetic particles impregnated in a microporous propylene hollow fiber (I-PPM) matrix. The obtained membranes were characterized from the morphological and structural points of view, using scanning electron microscopy (SEM), high resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX) and thermal gravimetric analyzer. The process performances (flow, selectivity) were studied using a variable magnetic field generated by electric coils. The results show the possibility of correcting the pH and removing aluminum ions from the condensation water of heating plants, during a winter period, without the intervention of any operator for the maintenance of the process. The pH was raised from an acidic one (2-4), to a slightly basic one (8-8.5), and the concentration of aluminum ions was lowered to the level allowed for discharge. Magnetic convection of the permeation module improves the pH correction process, but especially prevents the deposition of aluminum hydroxide on hollow fibers membranes.

15.
Membranes (Basel) ; 12(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35054577

RESUMO

The recovery of osmium from residual osmium tetroxide (OsO4) is a necessity imposed by its high toxicity, but also by the technical-economic value of metallic osmium. An elegant and extremely useful method is the recovery of osmium as a membrane catalytic material, in the form of nanoparticles obtained on a polymeric support. The subject of the present study is the realization of a composite membrane in which the polymeric matrix is the polypropylene hollow fiber, and the active component consists of the osmium nanoparticles obtained by reducing an alcoholic solution of osmium tetroxides directly on the polymeric support. The method of reducing osmium tetroxide on the polymeric support is based on the use of 10-undecenoic acid (10-undecylenic acid) (UDA) as a reducing agent. The osmium tetroxide was solubilized in t-butanol and the reducing agent, 10-undecenoic acid (UDA), in i-propanol, t-butanol or n-decanol solution. The membranes containing osmium nanoparticles (Os-NP) were characterized morphologically by the following: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), structurally: energy-dispersive spectroscopy analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy. In terms of process performance, thermal gravimetric analysis was performed by differential scanning calorimetry (TGA, DSC) and in a redox reaction of an organic marker, p-nitrophenol (PNP) to p-aminophenol (PAP). The catalytic reduction reaction with sodium tetraborate solution of PNP to PAP yielded a constant catalytic rate between 2.04 × 10-4 mmol s-1 and 8.05 × 10-4 mmol s-1.

16.
Sensors (Basel) ; 20(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413952

RESUMO

This paper describes the steps involved in obtaining a set of relevant data sources and the accompanying method using software-based sensors to detect anomalous behavior in modern smartphones based on machine-learning classifiers. Three classes of models are investigated for classification: logistic regressions, shallow neural nets, and support vector machines. The paper details the design, implementation, and comparative evaluation of all three classes. If necessary, the approach could be extended to other computing devices, if appropriate changes were made to the software infrastructure, based upon mandatory capabilities of the underlying hardware.


Assuntos
Smartphone , Software , Modelos Logísticos , Redes Neurais de Computação , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...