Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563998

RESUMO

The specifics of meat production from free-ranging animals include the killing of animals in the wild with firearms. This type of uncontrolled killing sometimes leads to the phenomenon that the game does not die immediately but after a certain time from the shot to death, which may ultimately affect the quality of the meat. During one hunting year on free-ranging red deer (Cervus elaphus) (RD), roe deer (Capreolus capreolus) (RoD), and wild boar (Sus scrofa) (WB), the effect of time from shot to death on final pH, water-holding capacity (WHC), water content, and colour (L*, a*, b*) was investigated. All analyses were performed on Musculus biceps femoris (BF). After shooting, the animals were divided into two categories (A = time from shot to death ≤ 1 min; B = time from shot to death > 1 min). In RD, group B had significantly lower (p < 0.05) water content. In RoD, group B had significantly lower (p < 0.05) values of L* and b*. In WB, group B had significantly lower (p < 0.05) L* value and significantly higher (p < 0.05) pH value. The study proves that in BF of the three studied game species, the time extension from shot to death significantly affects the final water content values in RD, L* and b* in RoD and pH and L * in WB.

2.
PLoS One ; 6(8): e23602, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21897847

RESUMO

The Western Capercaillie (Tetrao urogallus L.) is a grouse species of open boreal or high altitude forests of Eurasia. It is endangered throughout most mountain range habitat areas in Europe. Two major genetically identifiable lineages of Western Capercaillie have been described to date: the southern lineage at the species' southernmost range of distribution in Europe, and the boreal lineage. We address the question of genetic differentiation of capercaillie populations from the Rhodope and Rila Mountains in Bulgaria, across the Dinaric Mountains to the Slovenian Alps. The two lineages' contact zone and resulting conservation strategies in this so-far understudied area of distribution have not been previously determined. The results of analysis of mitochondrial DNA control region sequences of 319 samples from the studied populations show that Alpine populations were composed exclusively of boreal lineage; Dinaric populations of both, but predominantly (96%) of boreal lineage; and Rhodope-Rila populations predominantly (>90%) of southern lineage individuals. The Bulgarian mountains were identified as the core area of the southern lineage, and the Dinaric Mountains as the western contact zone between both lineages in the Balkans. Bulgarian populations appeared genetically distinct from Alpine and Dinaric populations and exhibited characteristics of a long-term stationary population, suggesting that they should be considered as a glacial relict and probably a distinct subspecies. Although all of the studied populations suffered a decline in the past, the significantly lower level of genetic diversity when compared with the neighbouring Alpine and Bulgarian populations suggests that the isolated Dinaric capercaillie is particularly vulnerable to continuing population decline. The results are discussed in the context of conservation of the species in the Balkans, its principal threats and legal protection status. Potential conservation strategies should consider the existence of the two lineages and their vulnerable Dinaric contact zone and support the specificities of the populations.


Assuntos
Galliformes/genética , Variação Genética , Animais , DNA Mitocondrial/genética , Europa (Continente) , Evolução Molecular , Feminino , Haplótipos/genética , Masculino , Filogenia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...