Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 1043828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386134

RESUMO

GPR40 is a class A G-protein coupled receptor (GPCR) mainly expressed in pancreas, intestine, and brain. Its endogenous ligand is long-chain fatty acids, which activate GPR40 after meal ingestion to induce secretion of incretins in the gut, including GLP-1, GIP, and PYY, the latter control appetite and glucose metabolism. For its involvement in satiety regulation and metabolic homeostasis, partial and AgoPAM (Positive Allosteric Modulation agonist) GPR40 agonists had been developed for type 2 diabetes (T2D) by many pharmaceutical companies. The proof-of-concept of GPR40 for control of hyperglycemia was achieved by clinical trials of partial GPR40 agonist, TAK-875, demonstrating a robust decrease in HbA1c (-1.12%) after chronic treatment in T2D. The development of TAK-875, however, was terminated due to liver toxicity in 2.7% patients with more than 3-fold increase of ALT in phase II and III clinical trials. Different mechanisms had since been proposed to explain the drug-induced liver injury, including acyl glucuronidation, inhibition of mitochondrial respiration and hepatobiliary transporters, ROS generation, etc. In addition, activation of GPR40 by AgoPAM agonists in pancreas was also linked to ß-cell damage in rats. Notwithstanding the multiple safety concerns on the development of small-molecule GPR40 agonists for T2D, some partial and AgoPAM GPR40 agonists are still under clinical development. Here we review the most recent progress of GPR40 agonists development and the possible mechanisms of the side effects in different organs, and discuss the possibility of developing novel strategies that retain the robust efficacy of GPR40 agonists for metabolic disorders while avoid toxicities caused by off-target and on-target mechanisms.

2.
Hepatology ; 73(4): 1290-1306, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33131062

RESUMO

BACKGROUND AND AIMS: The mechanisms by which the I148M mutant variant of the patatin-like phospholipase domain-containing 3 (PNPLA3I148M ) drives development of nonalcoholic steatohepatitis (NASH) are not known. The aim of this study was to obtain insights on mechanisms underlying PNPLA3I148M -induced acceleration of NASH. APPROACH AND RESULTS: Hepatocyte-specific overexpression of empty vector (luciferase), human wild-type PNPLA3, or PNPLA3I148M was achieved using adeno-associated virus 8 in a diet-induced mouse model of nonalcoholic fatty liver disease followed by chow diet or high-fat Western diet with ad libitum administration of sugar in drinking water (WDSW) for 8 weeks. Under WDSW, PNPLA3I148M overexpression accelerated steatohepatitis with increased steatosis, inflammation ballooning, and fibrosis (P < 0.001 versus other groups for all). Silencing PNPLA3I148M after its initial overexpression abrogated these findings. PNPLA3I148M caused 22:6n3 docosahexanoic acid depletion and increased ceramides under WDSW in addition to increasing triglycerides and diglycerides, especially enriched with unsaturated fatty acids. It also increased oxidative stress and endoplasmic reticulum stress. Increased total ceramides was associated with signature of transducer and activator of transcription 3 (STAT3) activation with downstream activation of multiple immune-inflammatory pathways at a transcriptomic level by network analyses. Silencing PNPLA3I148M reversed STAT3 activation. Conditioned media from HepG2 cells overexpressing PNPLA3I148M increased procollagen mRNA expression in LX2 cells; this was abrogated by hepatocyte STAT3 inhibition. CONCLUSIONS: Under WDSW, PNPLA3I148M overexpression promotes steatosis and NASH by metabolic reprogramming characterized by increased triglycerides and diglycerides, n3 polyunsaturated fatty acid depletion, and increased ceramides with resultant STAT3 phosphorylation and downstream inflammatory pathway activation driving increased stellate cell fibrogenic activity.


Assuntos
Lipase , Cirrose Hepática , Proteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Humanos , Lipase/genética , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Polimorfismo Genético , Transcriptoma
3.
PLoS One ; 14(2): e0211568, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30811418

RESUMO

Physical activity promotes metabolic and cardiovascular health benefits that derive in part from the transcriptional responses to exercise that occur within skeletal muscle and other organs. There is interest in discovering a pharmacologic exercise mimetic that could imbue wellness and alleviate disease burden. However, the molecular physiology by which exercise signals the transcriptional response is highly complex, making it challenging to identify a single target for pharmacological mimicry. The current studies evaluated the transcriptome responses in skeletal muscle, heart, liver, and white and brown adipose to novel small molecule activators of AMPK (pan-activators for all AMPK isoforms) compared to that of exercise. A striking level of congruence between exercise and pharmacological AMPK activation was observed across the induced transcriptome of these five tissues. However, differences in acute metabolic response between exercise and pharmacologic AMPK activation were observed, notably for acute glycogen balances and related to the energy expenditure induced by exercise but not pharmacologic AMPK activation. Nevertheless, intervention with repeated daily administration of short-acting activation of AMPK was found to mitigate hyperglycemia and hyperinsulinemia in four rodent models of metabolic disease and without the cardiac glycogen accretion noted with sustained pharmacologic AMPK activation. These findings affirm that activation of AMPK is a key node governing exercise mediated transcription and is an attractive target as an exercise mimetic.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Animais , Metabolismo Energético , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Oxirredução , Condicionamento Físico Animal
4.
ACS Med Chem Lett ; 9(1): 39-44, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29348809

RESUMO

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of mammalian energy homeostasis and has been implicated in mediating many of the beneficial effects of exercise and weight loss including lipid and glucose trafficking. As such, the enzyme has long been of interest as a target for the treatment of Type 2 Diabetes Mellitus. We describe the optimization of ß1-selective, liver-targeted AMPK activators and their evolution into systemic pan-activators capable of acutely lowering glucose in mouse models. Identifying surrogates for the key acid moiety in early generation compounds proved essential in improving ß2-activation and in balancing improvements in plasma unbound fraction while avoiding liver sequestration.

5.
Science ; 357(6350): 507-511, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28705990

RESUMO

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/induzido quimicamente , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Animais , Benzimidazóis , Glicemia/efeitos dos fármacos , Jejum , Glicogênio/metabolismo , Hipoglicemia/induzido quimicamente , Imidazóis/efeitos adversos , Imidazóis/química , Insulina/farmacologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Piridinas/efeitos adversos , Piridinas/química
7.
PLoS One ; 11(10): e0164133, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695056

RESUMO

OBJECTIVES: Platensimycin (PTM) is a natural antibiotic produced by Streptomyces platensis that selectively inhibits bacterial and mammalian fatty acid synthase (FAS) without affecting synthesis of other lipids. Recently, we reported that oral administration of PTM in mouse models (db/db and db/+) with high de novo lipogenesis (DNL) tone inhibited DNL and enhanced glucose oxidation, which in turn led to net reduction of liver triglycerides (TG), reduced ambient glucose, and improved insulin sensitivity. The present study was conducted to explore translatability and the therapeutic potential of FAS inhibition for the treatment of diabetes in humans. METHODS: We tested PTM in animal models with different DNL tones, i.e. intrinsic synthesis rates, which vary among species and are regulated by nutritional and disease states, and confirmed glucose-lowering efficacy of PTM in lean NHPs with quantitation of liver lipid by MRS imaging. To understand the direct effect of PTM on liver metabolism, we performed ex vivo liver perfusion study to compare FAS inhibitor and carnitine palmitoyltransferase 1 (CPT1) inhibitor. RESULTS: The efficacy of PTM is generally reproduced in preclinical models with DNL tones comparable to humans, including lean and established diet-induced obese (eDIO) mice as well as non-human primates (NHPs). Similar effects of PTM on DNL reduction were observed in lean and type 2 diabetic rhesus and lean cynomolgus monkeys after acute and chronic treatment of PTM. Mechanistically, PTM lowers plasma glucose in part by enhancing hepatic glucose uptake and glycolysis. Teglicar, a CPT1 inhibitor, has similar effects on glucose uptake and glycolysis. In sharp contrast, Teglicar but not PTM significantly increased hepatic TG production, thus caused liver steatosis in eDIO mice. CONCLUSIONS: These findings demonstrate unique properties of PTM and provide proof-of-concept of FAS inhibition having potential utility for the treatment of diabetes and related metabolic disorders.

8.
J Biol Chem ; 291(45): 23428-23439, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621313

RESUMO

Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Mutação , Insuficiência Renal/genética , Síndrome de Wolff-Parkinson-White/genética , Animais , Apoptose , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Inflamação/genética , Inflamação/patologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Insuficiência Renal/patologia , Síndrome de Wolff-Parkinson-White/patologia
9.
J Lipid Res ; 56(11): 2183-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26373568

RESUMO

Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.


Assuntos
Colesterol/sangue , Pirazóis/farmacologia , Receptores de Glucagon/antagonistas & inibidores , beta-Alanina/análogos & derivados , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipercolesterolemia/induzido quimicamente , Concentração Inibidora 50 , Absorção Intestinal , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pirazóis/efeitos adversos , beta-Alanina/efeitos adversos , beta-Alanina/farmacologia
10.
Prog Mol Biol Transl Sci ; 121: 165-215, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24373238

RESUMO

Obesity has become a major concern of public health. A common feature of obesity and related metabolic disorders such as noninsulin-dependent diabetes mellitus is insulin resistance, wherein a given amount of insulin produces less than normal physiological responses. Insulin controls hepatic glucose and fatty acid metabolism, at least in part, via the regulation of gene expression. When the liver is insulin-sensitive, insulin can stimulate the expression of genes for fatty acid synthesis and suppress those for gluconeogenesis. When the liver becomes insulin-resistant, the insulin-mediated suppression of gluconeogenic gene expression is lost, whereas the induction of fatty acid synthetic gene expression remains intact. In the past two decades, the mechanisms of insulin-regulated hepatic gene expression have been studied extensively and many components of insulin signal transduction pathways have been identified. Factors that alter these pathways, and the insulin-regulated hepatic gene expression, have been revealed and the underlying mechanisms have been proposed. This chapter summarizes the recent progresses in our understanding of the effects of dietary factors, drugs, bioactive compounds, hormones, and cytokines on insulin-regulated hepatic gene expression. Given the large amount of information and progresses regarding the roles of insulin, this chapter focuses on findings in the liver and hepatocytes and not those described for other tissues and cells. Typical insulin-regulated hepatic genes, such as insulin-induced glucokinase and sterol regulatory element-binding protein-1c and insulin-suppressed cytosolic phosphoenolpyruvate carboxyl kinase and insulin-like growth factor-binding protein 1, are used as examples to discuss the mechanisms such as insulin regulatory element-mediated transcriptional regulation. We also propose the potential mechanisms by which these factors affect insulin-regulated hepatic gene expression and discuss potential future directions of the area of research.


Assuntos
Regulação da Expressão Gênica , Insulina/metabolismo , Fígado/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Secreção de Insulina , Fígado/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Compostos Fitoquímicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
J Lipid Res ; 54(10): 2615-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828778

RESUMO

Hepatic glucose overproduction is a major characteristic of type 2 diabetes. Because glucagon is a key regulator for glucose homeostasis, antagonizing the glucagon receptor (GCGR) is a possible therapeutic strategy for the treatment of diabetes mellitus. To study the effect of hepatic GCGR inhibition on the regulation of lipid metabolism, we generated siRNA-mediated GCGR knockdown (si-GCGR) in the db/db mouse. The hepatic knockdown of GCGR markedly reduced plasma glucose levels; however, total plasma cholesterol was increased. The detailed lipid analysis showed an increase in the LDL fraction, and no change in VLDL HDL fractions. Further studies showed that the increase in LDL was the result of over-expression of hepatic lipogenic genes and elevated de novo lipid synthesis. Inhibition of hepatic glucagon signaling via siRNA-mediated GCGR knockdown had an effect on both glucose and lipid metabolism in db/db mice.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Lipogênese , Fígado/metabolismo , Receptores de Glucagon/genética , Animais , Glicemia , Colesterol/sangue , Diabetes Mellitus Tipo 2/terapia , Expressão Gênica , Técnicas de Silenciamento de Genes , Lipoproteínas LDL/sangue , Masculino , Camundongos , Camundongos Obesos , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Glucagon/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
12.
J Biol Chem ; 284(36): 24644-52, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19581301

RESUMO

The accumulation of triglycerides (TG) in the liver, designated hepatic steatosis, is characteristically associated with obesity and insulin resistance, but it can also develop after fasting. Here, we show that fasting-induced hepatic steatosis is under genetic control in inbred mice. After a 24-h fast, C57BL/6J mice and SJL/J mice both lost more than 20% of body weight and approximately 60% of total body TG. In C57BL/6J mice, TG accumulated in liver, producing frank steatosis. In striking contrast, SJL/J mice failed to accumulate any hepatic TG even though they lost nearly as much adipose tissue mass as the C57BL/6J mice. Mice from five other inbred strains developed fasting-induced steatosis like the C57BL/6J mice. Measurements of the uptake of free fatty acids (FA) in vivo and in vitro demonstrated that SJL/J mice were protected from steatosis because their heart and skeletal muscle took up and oxidized twice as much FA as compared with C57BL/6J mice. As a result of this muscle diversion, serum-free FA and ketone bodies rose much less after fasting in SJL/J mice as compared with C57BL/6J mice. When livers of SJL/J and C57BL/6J mice were perfused with similar concentrations of FA, the livers took up and esterified similar amounts. We conclude that SJL/J mice express one or more variant genes that lead to enhanced FA uptake and oxidation in muscle, thereby sparing the liver from FA overload in the fasting state.


Assuntos
Jejum/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Animais , Fígado Gorduroso/patologia , Fígado/patologia , Masculino , Camundongos , Músculo Esquelético/patologia , Oxirredução , Fatores de Tempo , Triglicerídeos/metabolismo
13.
Am J Physiol Endocrinol Metab ; 293(6): E1736-45, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17848638

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARgamma) regulates adipocyte genes involved in adipogenesis and lipid metabolism and is the molecular target for thiazolidinedione (TZD) antidiabetic agents. Adipose triglyceride lipase (ATGL) is a recently described triglyceride-specific lipase that is induced during adipogenesis and remains highly expressed in mature adipocytes. This study evaluates the ability of PPARgamma to directly regulate ATGL expression in adipocytes in vitro and in vivo. In fully differentiated 3T3-L1 adipocytes, ATGL mRNA and protein are increased by TZD and non-TZD PPARgamma agonists in a dose- and time-dependent manner. Rosiglitazone-mediated induction of ATGL mRNA is rapid and is not inhibited by the protein synthesis inhibitor cycloheximide, indicating that intervening protein synthesis is not required for this effect. Rosiglitazone-mediated induction of ATGL mRNA and protein is inhibited by the PPARgamma-specific antagonist GW-9662 and is also significantly reduced following siRNA-mediated knockdown of PPARgamma, supporting the direct transcriptional regulation of ATGL by PPARgamma. In vivo, ATGL mRNA and protein are increased by rosiglitazone treatment in white and brown adipose tissue of mice with and without obesity due to high-fat diet or leptin deficiency. Thus, PPARgamma positively regulates ATGL mRNA and protein expression in mature adipocytes in vitro and in adipose tissue in vivo, suggesting a role for ATGL in mediating PPARgamma's effects on lipid metabolism.


Assuntos
Adipócitos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , PPAR gama/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Anilidas/farmacologia , Animais , Hidrolases de Éster Carboxílico/genética , Cicloeximida/farmacologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Relação Dose-Resposta a Droga , Fluorenos/farmacologia , Expressão Gênica/efeitos dos fármacos , Leptina/genética , Lipase , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Rosiglitazona , Tiazolidinedionas/farmacologia
14.
Cell Metab ; 1(5): 297-308, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16054077

RESUMO

The high-cholesterol/high-fat Western diet has abetted an epidemic of atherosclerotic cardiovascular disease, the leading cause of death in industrialized nations. Liver X receptors (LXRs) are oxysterol sensors that are required for normal cholesterol and triglyceride homeostasis, yet synthetic LXR agonists produce undesirable hypertriglyceridemia. Here we report a previously unrecognized role for hepatic LXRalpha in the links between diet, serum lipids, and atherosclerosis. A modest increase in hepatic LXRalpha worsened serum lipid profiles in LDL-receptor null mice fed normal chow but had the opposite effect on lipids and afforded strong protection against atherosclerosis on a Western diet. The beneficial effect of hepatic LXRalpha was abrogated by a synthetic LXR agonist, which activated SREBP-1c and its target genes. Thus, the interplay between diet and hepatic LXRalpha is a critical determinant of serum lipid profiles and cardiovascular risk, and selective modulation of LXR target genes in liver can ameliorate hyperlipidemia and cardiovascular disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dieta , Metabolismo dos Lipídeos , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Arteriosclerose/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/agonistas , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica , Humanos , Hidrocarbonetos Fluorados , Lipídeos/sangue , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Nucleares Órfãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Proteína de Ligação a Elemento Regulador de Esterol 1 , Sulfonamidas , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
J Clin Invest ; 115(8): 2244-56, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16007265

RESUMO

In addition to its role in energy storage, adipose tissue also accumulates cholesterol. Concentrations of cholesterol and triglycerides are strongly correlated in the adipocyte, but little is known about mechanisms regulating cholesterol metabolism in fat cells. Here we report that antidiabetic thiazolidinediones (TZDs) and other ligands for the nuclear receptor PPARgamma dramatically upregulate oxidized LDL receptor 1 (OLR1) in adipocytes by facilitating the exchange of coactivators for corepressors on the OLR1 gene in cultured mouse adipocytes. TZDs markedly stimulate the uptake of oxidized LDL (oxLDL) into adipocytes, and this requires OLR1. Increased OLR1 expression, resulting either from TZD treatment or adenoviral gene delivery, significantly augments adipocyte cholesterol content and enhances fatty acid uptake. OLR1 expression in white adipose tissue is increased in obesity and is further induced by PPARgamma ligand treatment in vivo. Serum oxLDL levels are decreased in both lean and obese diabetic animals treated with TZDs. These data identify OLR1 as a novel PPARgamma target gene in adipocytes. While the physiological role of adipose tissue in cholesterol and oxLDL metabolism remains to be established, the induction of OLR1 is a potential means by which PPARgamma ligands regulate lipid metabolism and insulin sensitivity in adipocytes.


Assuntos
Adipócitos/metabolismo , Colesterol/metabolismo , PPAR gama/metabolismo , Receptores de LDL/biossíntese , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Resistência à Insulina , Lipoproteínas LDL/metabolismo , Camundongos , Receptores de LDL Oxidado , Receptores Depuradores Classe E , Tiazolidinedionas/farmacologia
16.
Genes Dev ; 19(4): 453-61, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15681609

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARgamma) is the master regulator of adipogenesis as well as the target of thiazolidinedione (TZD) antidiabetic drugs. Many PPARgamma target genes are induced during adipogenesis, but others, such as glycerol kinase (GyK), are expressed at low levels in adipocytes and dramatically up-regulated by TZDs. Here, we have explored the mechanism whereby an exogenous PPARgamma ligand is selectively required for adipocyte gene expression. The GyK gene contains a functional PPARgamma-response element to which endogenous PPARgamma is recruited in adipocytes. However, unlike the classic PPARgamma-target gene aP2, which is constitutively associated with coactivators, the GyK gene is targeted by nuclear receptor corepressors in adipocytes. TZDs trigger the dismissal of corepressor histone deacetylase (HDAC) complexes and the recruitment of coactivators to the GyK gene. TZDs also induce PPARgamma-Coactivator 1alpha (PGC-1alpha), whose recruitment to the GyK gene is sufficient to release the corepressors. Thus, selective modulation of adipocyte PPARgamma target genes by TZDs involves the dissociation of corepressors by direct and indirect mechanisms.


Assuntos
Adipócitos/fisiologia , PPAR gama/fisiologia , Proteínas Repressoras/fisiologia , Transcrição Gênica/fisiologia , Células 3T3-L1 , Adipócitos/enzimologia , Animais , Sequência de Bases , Primers do DNA , Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Camundongos , Dados de Sequência Molecular , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ligação Proteica , Homologia de Sequência do Ácido Nucleico , Tiazolidinedionas/farmacologia , Transativadores/biossíntese , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacos
17.
Acta Neuropathol ; 105(2): 177-84, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12536229

RESUMO

Mutations in the gene encoding alpha-synuclein (alpha-syn) have recently been linked to rare hereditary forms of Parkinson's disease. A yeast two-hybrid screen with alpha-synuclein (alpha-syn) identified synphilin as an alpha-syn-interacting protein, potentially implicating synphilin in the pathogenesis of synucleinopathies. Co-transfection of synphilin and the central (NAC) region of alpha-syn in HEH293 cells resulted in synuclein inclusions. Furthermore, synphilin immunoreactivity has been observed in Lewy bodies (LBs) and glial cytoplasmic inclusions of synucleinopathies. To further characterize synphilin, we utilized two new anti-synphilin antibodies for biochemical and immunohistochemical studies in normal and disease brain tissues. In normal brain tissue, synphilin localized predominantly to large neurons, such as substantia nigra neurons, hippocampal pyramidal and cerebellar Purkinje cells. However, in a few pathological cases synphilin immunoreactivity was present in glial cells and a small percentage of cortical and nigral LBs. In brain extracts, synphilin was observed primarily as a 90-kDa band but protein bands of 50 and 65 kDa were also present in both soluble (high salt) and lipid (Triton X-100) fractions. Additionally, less abundant higher molecular mass species, including a 120-kDa band of similar size to that of synphilin expressed in transiently transfected cells were recovered in 8 M urea-solubilized pellets after sequential extraction of brain tissue with buffers of increasing strengths. The presence of the synphilin of higher molecular mass was detected regardless of alpha-syn pathology and may represent an immature form of synphilin. Thus, although synphilin may be an alpha-syn-interacting protein present in some alpha-syn lesions, it still remains to be determined whether synphilin plays a critical role in mechanisms of brain degeneration in human synucleinopathies.


Assuntos
Anticorpos , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/imunologia , Encéfalo/patologia , Proteínas de Transporte/análise , Proteínas de Transporte/imunologia , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Corpos de Lewy/imunologia , Corpos de Lewy/metabolismo , Masculino , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Recombinantes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Nat Med ; 8(10): 1122-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12357248

RESUMO

Thiazolidinediones (TZDs) are effective therapies for type 2 diabetes, which has reached epidemic proportions in industrialized societies. TZD treatment reduces circulating free fatty acids (FFAs), which oppose insulin actions in skeletal muscle and other insulin target tissues. Here we report that TZDs, acting as ligands for the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-gamma, markedly induce adipocyte glycerol kinase (GyK) gene expression. This is surprising, as standard textbooks indicate that adipocytes lack GyK and thereby avoid futile cycles of triglyceride breakdown and resynthesis from glycerol and FFAs. By inducing GyK, TZDs markedly stimulate glycerol incorporation into triglyceride and reduce FFA secretion from adipocytes. The 'futile' fuel cycle resulting from expression of GyK in adipocytes is thus a novel mechanism contributing to reduced FFA levels and perhaps insulin sensitization by antidiabetic therapies.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Hipoglicemiantes/farmacologia , Tiazóis/farmacologia , Tiazolidinedionas , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos não Esterificados/metabolismo , Regulação da Expressão Gênica , Glicerol/metabolismo , Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptores Citoplasmáticos e Nucleares/metabolismo , Ciclização de Substratos , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...