Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1061, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535383

RESUMO

The Hippo pathway is a central regulator of tissue development and homeostasis, and has been reported to have a role during vascular development. Here we develop a bioluminescence-based biosensor that monitors the activity of the Hippo core component LATS kinase. Using this biosensor and a library of small molecule kinase inhibitors, we perform a screen for kinases modulating LATS activity and identify VEGFR as an upstream regulator of the Hippo pathway. We find that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which subsequently inhibits LATS and activates the Hippo effectors YAP and TAZ. We further show that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and tumor vasculogenic mimicry. Thus, our work offers a biosensor tool for the study of the Hippo pathway and suggests a role for Hippo signaling in regulating blood vessel formation in physiological and pathological settings.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais/fisiologia , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Mutagênese Sítio-Dirigida , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Oncogene ; 35(32): 4179-90, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-26725323

RESUMO

KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations.


Assuntos
Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mitógenos/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ubiquitinação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Mutação , Fosforilação/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
3.
Oncogene ; 34(27): 3536-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25195862

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic virus and the culprit behind the human disease Kaposi sarcoma (KS), an AIDS-defining malignancy. KSHV encodes a viral G-protein-coupled receptor (vGPCR) critical for the initiation and progression of KS. In this study, we identified that YAP/TAZ, two homologous oncoproteins inhibited by the Hippo tumor suppressor pathway, are activated in KSHV-infected cells in vitro, KS-like mouse tumors and clinical human KS specimens. The KSHV-encoded vGPCR acts through Gq/11 and G12/13 to inhibit the Hippo pathway kinases Lats1/2, promoting the activation of YAP/TAZ. Furthermore, depletion of YAP/TAZ blocks vGPCR-induced cell proliferation and tumorigenesis in a xenograft mouse model. The vGPCR-transformed cells are sensitive to pharmacologic inhibition of YAP. Our study establishes a pivotal role of the Hippo pathway in mediating the oncogenic activity of KSHV and development of KS, and also suggests a potential of using YAP inhibitors for KS intervention.


Assuntos
Transformação Celular Viral/genética , Herpesvirus Humano 8/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Aciltransferases , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Oncogene ; 32(5): 663-9, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22391558

RESUMO

The TET (ten-eleven translocation) family of α-ketoglutarate (α-KG)-dependent dioxygenases catalyzes the sequential oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine, leading to eventual DNA demethylation. The TET2 gene is a bona fide tumor suppressor frequently mutated in leukemia, and TET enzyme activity is inhibited in IDH1/2-mutated tumors by the oncometabolite 2-hydroxyglutarate, an antagonist of α-KG, linking 5mC oxidation to cancer development. We report here that the levels of 5hmC are dramatically reduced in human breast, liver, lung, pancreatic and prostate cancers when compared with the matched surrounding normal tissues. Associated with the 5hmC decrease is the substantial reduction of the expression of all three TET genes, revealing a possible mechanism for the reduced 5hmC in cancer cells. The decrease of 5hmC was also observed during tumor development in different genetically engineered mouse models. Together, our results identify 5hmC as a biomarker whose decrease is broadly and tightly associated with tumor development.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/genética , Citosina/análogos & derivados , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , 5-Metilcitosina/metabolismo , Animais , Citosina/metabolismo , Regulação para Baixo , Humanos , Hidroxilação , Camundongos , Oxigenases de Função Mista
5.
Oncogene ; 32(25): 3091-100, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22824796

RESUMO

Mutations in the genes encoding isocitrate dehydrogenase, IDH1 and IDH2, have been reported in gliomas, myeloid leukemias, chondrosarcomas and thyroid cancer. We discovered IDH1 and IDH2 mutations in 34 of 326 (10%) intrahepatic cholangiocarcinomas. Tumor with mutations in IDH1 or IDH2 had lower 5-hydroxymethylcytosine and higher 5-methylcytosine levels, as well as increased dimethylation of histone H3 lysine 79 (H3K79). Mutations in IDH1 or IDH2 were associated with longer overall survival (P=0.028) and were independently associated with a longer time to tumor recurrence after intrahepatic cholangiocarcinoma resection in multivariate analysis (P=0.021). IDH1 and IDH2 mutations were significantly associated with increased levels of p53 in intrahepatic cholangiocarcinomas, but no mutations in the p53 gene were found, suggesting that mutations in IDH1 and IDH2 may cause a stress that leads to p53 activation. We identified 2309 genes that were significantly hypermethylated in 19 cholangiocarcinomas with mutations in IDH1 or IDH2, compared with cholangiocarcinomas without these mutations. Hypermethylated CpG sites were significantly enriched in CpG shores and upstream of transcription start sites, suggesting a global regulation of transcriptional potential. Half of the hypermethylated genes overlapped with DNA hypermethylation in IDH1-mutant gliobastomas, suggesting the existence of a common set of genes whose expression may be affected by mutations in IDH1 or IDH2 in different types of tumors.


Assuntos
Colangiocarcinoma/genética , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Neoplasias Hepáticas/genética , Sequência de Bases , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Colangiocarcinoma/metabolismo , Ilhas de CpG , Metilação de DNA , Glioblastoma/metabolismo , Histonas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-22096030

RESUMO

Glycolysis is a catabolic process of glucose hydrolysis needed for energy and biosynthetic intermediates, whereas gluconeogenesis is a glucose production process important for maintaining blood glucose levels during starvation. Although they share many enzymes, these two processes are not simply the reverse of each other and are instead reciprocally regulated. Two key enzymes that regulate irreversible steps in these two processes are pyruvate kinase (PK) and phosphoenolpyruvate carboxy kinase (PEPCK), which catalyze the last and first step of glycolysis and gluconeogenesis, respectively, and are both regulated by lysine acetylation. Acetylation at Lys305 of the PKM (muscle form of PK) decreases its activity and also targets it for chaperone-mediated autophagy and subsequent lysosome degradation. Acetylation of PEPCK, on the other hand, targets it for ubiquitylation by the HECT E3 ligase, UBR5/EDD1, and subsequent proteasomal degradation. These studies established a model in which acetylation regulates metabolic enzymes via different mechanisms and also revealed cross talk between acetylation and ubiquitination. Given that most metabolic enzymes are acetylated, we propose that acetylation is a major posttranslational modifier that regulates cellular metabolism.


Assuntos
Gluconeogênese , Glicólise , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Piruvato Quinase/metabolismo , Acetilação , Animais , Autofagia , Humanos , Piruvato Quinase/antagonistas & inibidores
7.
Cell Death Differ ; 18(1): 133-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20616807

RESUMO

Tuberous sclerosis complex (TSC)1 and TSC2 are tumor suppressors that inhibit cell growth and mutation of either gene causes benign tumors in multiple tissues. The TSC1 and TSC2 gene products form a functional complex that has GTPase-activating protein (GAP) activity toward Ras homolog enriched in brain (Rheb) to inhibit mammalian target of rapamycin complex 1 (mTORC1), which is constitutively activated in TSC mutant tumors. We found that cells with mutation in either TSC1 or TSC2 are hypersensitive to endoplasmic reticulum (ER) stress and undergo apoptosis. Although the TSC mutant cells show elevated eIF2α phosphorylation, an early ER stress response marker, at both basal and induced conditions, induction of other ER stress response markers, including ATF4, ATF6 and C/EBP homologous protein (CHOP), is severely compromised. The defects in ER stress response are restored by raptor knockdown but not by rapamycin treatment in the TSC mutant cells, indicating that a rapamycin-insensitive mTORC function is responsible for the defects in ER stress response. Consistently, activation of Rheb sensitizes cells to ER stress. Our data show an important role of TSC1/TSC2 and Rheb in unfolded protein response and cell survival. We speculate that an important physiological function of the TSC1/2 tumor suppressors is to protect cells from harmful conditions. These observations indicate a potential therapeutic application of using ER stress agents to selectively kill TSC1 or TSC2 mutant cells for TSC treatment.


Assuntos
Apoptose , Retículo Endoplasmático/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Leupeptinas/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Complexos Multiproteicos , Mutação , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Fosforilação , Proteínas/metabolismo , Proteínas/fisiologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
8.
Acta Physiol (Oxf) ; 196(1): 55-63, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19243571

RESUMO

AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved in eukaryotes. Elevated AMP/ATP ratio activates AMPK, which inhibits energy-consuming processes and activates energy-producing processes to restore the energy homeostasis inside the cell. AMPK activators, metformin and thiazolidinediones, are used for the treatment of type II diabetes. Recently, reports have indicated that AMPK may also be a beneficial target for cancer treatment. Cancer cells have characteristic metabolic changes different from normal cells and, being a key metabolic regulator, AMPK may regulate the switch. AMPK may act to inhibit tumorigenesis through regulation of cell growth, cell proliferation, autophagy, stress responses and cell polarity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias/enzimologia , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Animais , Autofagia/fisiologia , Polaridade Celular , Metabolismo Energético/fisiologia , Humanos , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Oncogene ; 25(48): 6347-60, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17041621

RESUMO

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls many aspects of cellular physiology, including transcription, translation, cell size, cytoskeletal organization and autophagy. Recent advances in the mTOR signaling field have found that mTOR exists in two heteromeric complexes, mTORC1 and mTORC2. The activity of mTORC1 is regulated by the integration of many signals, including growth factors, insulin, nutrients, energy availability and cellular stressors such as hypoxia, osmotic stress, reactive oxygen species and viral infection. In this review we highlight recent advances in the mTOR signaling field that relate to how the two mTOR complexes are regulated, and we discuss stress conditions linked to the mTOR signaling network that have not been extensively covered in other reviews. Given the diversity of signals that have been shown to impinge on mTOR, we also speculate on other signal-transduction pathways that may be linked to mTOR in the future.


Assuntos
Proteínas Quinases/fisiologia , Animais , Dano ao DNA , Retroalimentação , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Quinases/genética , Transdução de Sinais , Serina-Treonina Quinases TOR
11.
Nat Genet ; 29(1): 25-33, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11528387

RESUMO

Although the ras genes have long been established as proto-oncogenes, the dominant role of activated ras in cell transformation has been questioned. Previous studies have shown frequent loss of the wildtype Kras2 allele in both mouse and human lung adenocarcinomas. To address the possible tumor suppressor role of wildtype Kras2 in lung tumorigenesis, we have carried out a lung tumor bioassay in heterozygous Kras2-deficient mice. Mice with a heterozygous Kras2 deficiency were highly susceptible to the chemical induction of lung tumors when compared to wildtype mice. Activating Kras2 mutations were detected in all chemically induced lung tumors obtained from both wildtype and heterozygous Kras2-deficient mice. Furthermore, wildtype Kras2 inhibited colony formation and tumor development by transformed NIH/3T3 cells and a mouse lung tumor cell line containing an activated Kras2 allele. Allelic loss of wildtype Kras2 was found in 67% to 100% of chemically induced mouse lung adenocarcinomas that harbor a mutant Kras2 allele. Finally, an inverse correlation between the level of wildtype Kras2 expression and extracellular signal-regulated kinase (ERK) activity was observed in these cells. These data strongly suggest that wildtype Kras2 has tumor suppressor activity and is frequently lost during lung tumor progression.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Pulmonares/prevenção & controle , Proteínas Proto-Oncogênicas/genética , Animais , Sequência de Bases , Carcinógenos/toxicidade , Divisão Celular/genética , Mapeamento Cromossômico , Primers do DNA , Heterozigoto , Perda de Heterozigosidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras
12.
EMBO J ; 20(14): 3716-27, 2001 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-11447113

RESUMO

Activating and inhibitory phosphorylation mechanisms play an essential role in regulating Raf kinase activity. Here we demonstrate that phosphorylation of C-Raf in the kinase activation loop (residues T491 and S494) is necessary, but not sufficient, for activation. C-Raf has additional activating phosphorylation sites at S338 and Y341. Mutating all four of these residues to acidic residues, S338D/Y341D/T491E/S494D (DDED), in C-Raf results in constitutive activity. However, acidic residue substitutions at the corresponding activation loop sites in B-Raf are sufficient to confer constitutive activity. B-Raf and C-Raf also utilize similar inhibitory phosphorylation mechanisms to regulate kinase activity. B-Raf has multiple inhibitory phosphorylation sites necessary for full kinase inhibition where C-Raf requires only one. We examined the functional significance of these inhibitory and activating phosphorylations in Caenorhabditis elegans lin-45 Raf. Eliminating the inhibitory phosphorylation or mimicking activating phosphorylation sites is sufficient to confer constitutive activity upon lin-45 Raf and induce multi-vulva phenotypes in C.elegans. Our results demonstrate that different members of the Raf family kinases have both common and distinct phosphorylation mechanisms to regulate kinase activity and biological function.


Assuntos
Proteínas Proto-Oncogênicas c-raf/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Linhagem Celular , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células PC12 , Fosforilação , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Ratos , Homologia de Sequência de Aminoácidos
13.
J Biol Chem ; 276(37): 34728-37, 2001 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-11457831

RESUMO

Ras plays an essential role in activation of Raf kinase which is directly responsible for activation of the MEK-ERK kinase pathway. A direct protein-protein interaction between Ras and the N-terminal regulatory domain of Raf is critical for Raf activation. However, association with Ras is not sufficient to activate Raf in vitro, indicating that Ras must activate some other biochemical events leading to activation of Raf. We have observed that RasV12Y32F and RasV12T35S mutants fail to activate Raf, yet retain the ability to interact with Raf. In this report, we showed that RasV12Y32F and RasV12T35S can cooperate with members of the Rho family GTPases to activate Raf while alone the Rho family GTPase is not effective in Raf activation. A dominant negative mutant of Rac or RhoA can block Raf activation by Ras. The effect of Rac or Cdc42 can be substituted by the Pak kinase, which is a direct downstream target of Rac/Cdc42. Furthermore, expression of a kinase inactive mutant of Pak or the N-terminal inhibitory domain of Pak1 can block the effect of Rac or Cdc42. In contrast, Pak appears to play no direct role in relaying the signal from RhoA to Raf, indicating that RhoA utilizes a different mechanism than Rac/Cdc42. Membrane-associated but not cytoplasmic Raf can be activated by Rac or RhoA. Our data support a model by which the Rho family small GTPases play an important role to mediate the activation of Raf by Ras. Ras, at least, has two distinct functions in Raf activation, recruitment of Raf to the plasma membrane by direct binding and stimulation of Raf activating kinases via the Rho family GTPases.


Assuntos
Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas rac de Ligação ao GTP/fisiologia , Proteínas ras/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Células COS , Ativação Enzimática , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/fisiologia , Quinases Ativadas por p21
14.
J Biol Chem ; 276(34): 31620-6, 2001 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-11410590

RESUMO

Phosphorylation can both positively and negatively regulate activity of the Raf kinases. Akt has been shown to phosphorylate and inhibit C-Raf activity. We have recently reported that Akt negatively regulates B-Raf kinase activation by phosphorylating multiple residues within its amino-terminal regulatory domain. Here we investigated the regulation of B-Raf by serum and glucocorticoid-inducible kinase, SGK, which shares close sequence identity with the catalytic domain of Akt but lacks the pleckstrin homology domain. We observed that SGK inhibits B-Raf activity. A comparison of substrate specificity between SGK and Akt indicates that SGK is a potent negative regulator of B-Raf. In contrast to Akt, SGK negatively regulates B-Raf kinase activity by phosphorylating only a single Akt consensus site, Ser(364). Under similar experimental conditions, SGK displays a measurably stronger inhibitory effect on B-Raf kinase activity than Akt, whereas Akt exhibits a more inhibitory effect on the forkhead transcription factor, FKHR. The selective substrate specificity is correlated with an enhanced association between Akt or SGK and their preferred substrates, FKHR and B-Raf, respectively. These results indicate that B-Raf kinase activity is negatively regulated by Akt and SGK, suggesting that the cross-talk between the B-Raf and other signaling pathways can be mediated by both Akt and SGK.


Assuntos
Sangue , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Linhagem Celular , Humanos , Proteínas Imediatamente Precoces , Fosforilação , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/química , Serina/metabolismo , Fatores de Transcrição/metabolismo
15.
Exp Lung Res ; 27(3): 269-95, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11293329

RESUMO

The Raf serine/threonine kinase plays an essential role to relay intracellular signals from the protooncogene Ras to activation of the mitogen-activated protein kinase (MAPK) cascade. The Raf kinase family consists of C-Raf (Raf-1), B-Raf, and A-Raf. Extensive efforts have been made in the last decade to study Raf regulation; however, precise molecular mechanism for Raf activation is still not fully understood. In this report, we discuss the current model of Raf regulation. Here we also report our recent findings that phosphorylation of Thr598 and Ser601, which lie between kinase subdomains VII and VIII, is essential for B-Raf activation by Ras. Substitution of these residues to alanine (B-RafAA) abolished Ras-induced B-Raf activation, without altering the association of B-Raf with other signaling proteins. Phosphopeptide mapping and immunoblotting with phosphospecific antibodies, which selectively recognize Thr598 and Ser601, phosphorylated B-Raf, confirmed that Thr598 and Ser601 are in vivo phosphorylation sites induced by Ras. Further, replacement of these two sites with acidic residues (B-RafED) renders B-Raf constitutively active. Consistent with these data, B-RafAA and B-RafED exhibited diminished and enhanced ability, respectively, to stimulate extracellular signal-regulated kinase (ERK) and Elk-dependent transcription. Moreover, functional studies revealed that B-RafED was able to promote NIH3T3 cell transformation and PC12 cell differentiation. Because Thr598 and Ser601 are conserved in all Raf family members, from Caenorhabditis elegans to mammals, we propose that phosphorylation of these two residues may be a general mechanism for Raf activation.


Assuntos
Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Células COS , Diferenciação Celular , Ativação Enzimática , Proteínas de Ligação ao GTP/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Células PC12 , Mapeamento de Peptídeos , Fosforilação , Proteínas Proto-Oncogênicas c-raf/genética , Ratos , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Treonina/química , Transfecção
16.
EMBO J ; 19(20): 5429-39, 2000 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-11032810

RESUMO

The Raf kinase family serves as a central intermediate to relay signals from Ras to ERK. The precise molecular mechanism for Raf activation is still not fully understood. Here we report that phosphorylation of Thr598 and Ser601, which lie between kinase subdomains VII and VIII, is essential for B-Raf activation by Ras. Substitution of these residues by alanine (B-RafAA) abolished Ras-induced B-Raf activation without altering the association of B-Raf with other signaling proteins. Phosphopeptide mapping and immunoblotting with phospho-specific antibodies confirmed that Thr598 and Ser601 are in vivo phosphorylation sites induced by Ras. Furthermore, replacement of these two sites by acidic residues (B-RafED) renders B-Raf constitutively active. Con sistent with these data, B-RafAA and B-RafED exhibited diminished and enhanced ability, respectively, to stimulate ERK activation and Elk-dependent transcription. Moreover, functional studies revealed that B-RafED was able to promote NIH 3T3 cell transformation and PC12 cell differentiation. Since Thr598 and Ser601 are conserved in all Raf family members from Caenorhabditis elegans to mammals, we propose that phosphorylation of these two residues may be a general mechanism for Raf activation.


Assuntos
Proteínas de Caenorhabditis elegans , Sequência Conservada , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas 14-3-3 , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Diferenciação Celular , Linhagem Celular , Transformação Celular Neoplásica , Sequência Conservada/genética , Ativação Enzimática , Proteínas de Choque Térmico HSP90/metabolismo , MAP Quinase Quinase 1 , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Proteína Oncogênica p21(ras)/metabolismo , Mapeamento de Peptídeos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Ratos , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphB4 , Receptores da Família Eph , Transcrição Gênica , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Proc Natl Acad Sci U S A ; 97(23): 12457-62, 2000 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-11035813

RESUMO

Semaphorin molecules serve as axon guidance signals that regulate the navigation of neuronal growth cones. Semaphorins have also been implicated in other biological processes, including the immune response. Plexins, acting either alone or in complex with neuropilins, have recently been identified as functional semaphorin receptors. However, the mechanisms of signal transduction by plexins remain largely unknown. We have demonstrated a direct interaction between plexin-B1 and activated Rac. Rac specifically interacts with the cytosolic domain of plexin-B1, but not with that of plexin-A3 or -C1. Neither RhoA nor Cdc42 interacts with plexin-B1, indicating that the Rac/plexin-B1 interaction is highly specific. The binding of GTP and the integrity of the Rac effector domain are required for the interaction with plexin-B1. Furthermore, we have identified that a Cdc42/Rac interactive binding (CRIB) motif in the cytosolic domain of plexin-B1 is essential for its interaction with active Rac. We have also observed that the semaphorin CD100, a ligand for plexin-B1, stimulates the interaction between plexin-B1 and active Rac. Our results support a model by which activated Rac plays a role in mediating semaphorin signals, resulting in reorganization of actin cytoskeletal structure.


Assuntos
Antígenos CD , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas , Proteínas rac1 de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Receptores de Superfície Celular/química , Relação Estrutura-Atividade
18.
EMBO J ; 19(19): 5148-56, 2000 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-11013217

RESUMO

The c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family, was shown to be involved in the response to various stresses in cultured cells. However, there is little in vivo evidence indicating a role for a JNK pathway in the stress response of an organism. We identified the Caenorhabditis elegans mek-1 gene, which encodes a 347 amino acid protein highly homologous to mammalian MKK7, an activator of JNK. Mek-1 reporter fusion proteins are expressed in pharyngeal muscle, uterus, a portion of intestine, and neurons. A mek-1 deletion mutant is hypersensitive to copper and cadmium ions and to starvation. A wild-type mek-1 transgene rescued the hypersensitivity to the metal ions. Double mutants of mek-1 with an eat-5, eat-11 or eat-18 mutation, which are characterized by a limited feeding defect, showed distinct growth defects under normal conditions. Expression of an activated form of MEK-1 in the whole animal or specifically in the pharynx inhibited pharyngeal pumping. These results suggest a role for mek-1 in stress responses, with a focus in the pharynx and/or intestine.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Helminto/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Cádmio/farmacologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Cobre/farmacologia , Feminino , Privação de Alimentos , Resposta ao Choque Térmico , Proteínas de Helminto/isolamento & purificação , Proteínas de Helminto/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase 1 , MAP Quinase Quinase 7 , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Movimento , Oviposição , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Alinhamento de Sequência , Deleção de Sequência
19.
Science ; 290(5489): 144-7, 2000 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-11021801

RESUMO

The signal transducers and activators of transcription (STAT) transcription factors become phosphorylated on tyrosine and translocate to the nucleus after stimulation of cells with growth factors or cytokines. We show that the Rac1 guanosine triphosphatase can bind to and regulate STAT3 activity. Dominant negative Rac1 inhibited STAT3 activation by growth factors, whereas activated Rac1 stimulated STAT3 phosphorylation on both tyrosine and serine residues. Moreover, activated Rac1 formed a complex with STAT3 in mammalian cells. Yeast two-hybrid analysis indicated that STAT3 binds directly to active but not inactive Rac1 and that the interaction occurs via the effector domain. Rac1 may serve as an alternate mechanism for targeting STAT3 to tyrosine kinase signaling complexes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas , Transativadores/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Janus Quinase 2 , Mutação , Proteínas de Neoplasias , Fosforilação , Fosfosserina/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Ratos , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Transativadores/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteínas rac1 de Ligação ao GTP/genética
20.
J Biol Chem ; 275(35): 27354-9, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10869359

RESUMO

B-Raf contains multiple Akt consensus sites located within its amino-terminal regulatory domain. One site, Ser(364), is conserved with c-Raf but two additional sites, Ser(428) and Thr(439), are unique to B-Raf. We have investigated the role of both the conserved and unique phosphorylation sites in the regulation of B-Raf activity in vitro and in vivo. We show that phosphorylation of B-Raf by Akt occurs at multiple residues within its amino-terminal regulatory domain, at both the conserved and unique phosphorylation sites. The alteration of the serine residues within the Akt consensus sites to alanines results in a progressive increase in enzymatic activity in vitro and in vivo. Furthermore, expression of Akt inhibits epidermal growth factor-induced B-Raf activity and inhibition of Akt with LY294002 up-regulates B-Raf activity, suggesting that Akt negatively regulates B-Raf in vivo. Our results demonstrate that B-Raf activity can be negatively regulated by Akt through phosphorylation in the amino-terminal regulatory domain of B-Raf. This cross-talk between the B-Raf and Akt serine/threonine kinases is likely to play an important role in modulating the signaling specificity of the Ras/Raf pathway and in promoting biological outcome.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Sequência Consenso , Ativação Enzimática , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Testes de Precipitina , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...