Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Aging ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169269

RESUMO

A deeper understanding of the molecular processes underlying late-onset Alzheimer's disease (LOAD) could aid in biomarker and drug target discovery. Using high-throughput serum proteomics in the prospective population-based Age, Gene/Environment Susceptibility-Reykjavik Study (AGES) cohort of 5,127 older Icelandic adults (mean age, 76.6 ± 5.6 years), we identified 303 proteins associated with incident LOAD over a median follow-up of 12.8 years. Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status, were implicated in neuronal processes and overlapped with LOAD protein signatures in brain and cerebrospinal fluid. We identified 17 proteins whose associations with LOAD were strongly dependent on APOE-ε4 carrier status, with mostly consistent associations in cerebrospinal fluid. Remarkably, four of these proteins (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated due to LOAD, a finding replicated in external cohorts and possibly reflecting a response to disease onset. These findings highlight dysregulated pathways at the preclinical stages of LOAD, including those both independent of and dependent on APOE-ε4 status.

2.
Res Sq ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39070651

RESUMO

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes. Investigating these genes' functional implications shed light on neurological, thyroidal, bone metabolism, and hematopoietic pathways that necessitate future investigation for blood pressure management that caters to sleep health lifestyle. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausible nature of distinct influences of both sleep duration extremes in cardiovascular health. Several of our loci are specific towards a particular population background or sex, emphasizing the importance of addressing heterogeneity entangled in gene-environment interactions, when considering precision medicine design approaches for blood pressure management.

3.
Sci Transl Med ; 16(753): eadn3504, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924431

RESUMO

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Cloridrato de Atomoxetina , Proteômica , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Proteômica/métodos , Apolipoproteína E4/genética , Cloridrato de Atomoxetina/uso terapêutico , Cloridrato de Atomoxetina/farmacologia , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Masculino , Idoso , Feminino , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo
4.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496537

RESUMO

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.

5.
Res Sq ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260284

RESUMO

The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n = 5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n = 719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.

6.
Respir Res ; 25(1): 44, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238732

RESUMO

BACKGROUND: A decline in forced expiratory volume (FEV1) is a hallmark of respiratory diseases that are an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. METHODS: Data from the population-based AGES-Reykjavik study were used. Serum proteomic measurements were done using 4782 DNA aptamers (SOMAmers). Data from 1479 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional two-sample Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). RESULTS: In observational analyses, 530 SOMAmers were associated with FEV1 after multiple testing adjustment (FDR < 0.05). The most significant were Retinoic Acid Receptor Responder 2 (RARRES2), R-Spondin 4 (RSPO4) and Alkaline Phosphatase, Placental Like 2 (ALPPL2). Of the 257 SOMAmers with genetic instruments available, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta (ERO1B) and Apolipoprotein M (APOM). THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. CONCLUSIONS: In summary, this large scale proteogenomic analyses of FEV1 reveals circulating protein markers of FEV1, as well as several proteins with potential causality to lung function.


Assuntos
Pulmão , Proteômica , Humanos , Feminino , Gravidez , Idoso , Volume Expiratório Forçado/genética , Placenta , Biomarcadores
7.
Eur J Heart Fail ; 26(1): 87-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37936531

RESUMO

AIM: To examine the ability of serum proteins in predicting future heart failure (HF) events, including HF with reduced or preserved ejection fraction (HFrEF or HFpEF), in relation to event time, and with or without considering established HF-associated clinical variables. METHODS AND RESULTS: In the prospective population-based Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS), 440 individuals developed HF after their first visit with a median follow-up of 5.45 years. Among them, 167 were diagnosed with HFrEF and 188 with HFpEF. A least absolute shrinkage and selection operator regression model with non-parametric bootstrap were used to select predictors from an analysis of 4782 serum proteins, and several pre-established clinical parameters linked to HF. A subset of 8-10 distinct or overlapping serum proteins predicted different future HF outcomes, and C-statistics were used to assess discrimination, revealing proteins combined with a C-index of 0.80 for all incident HF, 0.78 and 0.80 for incident HFpEF or HFrEF, respectively. In the AGES-RS, protein panels alone encompassed the risk contained in the clinical information and improved the performance characteristics of prediction models based on N-terminal pro-B-type natriuretic peptide and clinical risk factors. Finally, the protein predictors performed particularly well close to the time of an HF event, an outcome that was replicated in the Cardiovascular Health Study. CONCLUSION: A small number of circulating proteins accurately predicted future HF in the AGES-RS cohort of older adults, and they alone encompass the risk information found in a collection of clinical data. Incident HF events were predicted up to 8 years, with predictor performance significantly improving for events occurring less than 1 year ahead, a finding replicated in an external cohort study.


Assuntos
Insuficiência Cardíaca , Humanos , Idoso , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Estudos de Coortes , Volume Sistólico , Estudos Prospectivos , Proteômica , Proteínas Sanguíneas , Prognóstico
8.
Commun Biol ; 6(1): 1117, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923804

RESUMO

Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Pessoa de Meia-Idade , Humanos , Idoso , Cognição , Neurônios , Biomarcadores
9.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986771

RESUMO

The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n=5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n=719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.

10.
medRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961720

RESUMO

Alzheimer's disease (AD) is currently defined at the research level by the aggregation of amyloid-ß (Aß) and tau proteins in brain. While biofluid biomarkers are available to measure Aß and tau pathology, few biomarkers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here we describe the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals as assessed by two different proteomic technologies-tandem mass tag (TMT) mass spectrometry and SomaScan. Harmonization and integration of both data types allowed for generation of a robust protein co-expression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and overlapped with a previously described lipoprotein module in serum. Neddylation and oxidant detoxification/MAPK signaling modules had a negative association with APOE ε4 whereas the mitochondrion module had a positive association with APOE ε4. The directions of association were consistent between CSF and blood in two independent longitudinal cohorts, and altered levels of all three modules in blood were associated with dementia over 20 years prior to diagnosis. Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Individuals who had more severe glycolytic changes at baseline responded better to ATX. Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that did not cleanly stratify by Aß and tau status, underscoring the heterogeneity of pathological changes not fully reflected by Aß and tau. AD biofluid proteomics holds promise for the development of biomarkers that reflect diverse pathologies for use in clinical trials and precision medicine.

11.
Europace ; 25(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37967346

RESUMO

AIMS: Atrial fibrillation (AF) is associated with high risk of comorbidities and mortality. Our aim was to examine causal and predictive relationships between 4137 serum proteins and incident AF in the prospective population-based Age, Gene/Environment Susceptibility-Reykjavik (AGES-Reykjavik) study. METHODS AND RESULTS: The study included 4765 participants, of whom 1172 developed AF. Cox proportional hazards regression models were fitted for 4137 baseline protein measurements adjusting for known risk factors. Protein associations were tested for replication in the Cardiovascular Health Study (CHS). Causal relationships were examined in a bidirectional, two-sample Mendelian randomization analysis. The time-dependent area under the receiver operating characteristic curve (AUC)-statistic was examined as protein levels and an AF-polygenic risk score (PRS) were added to clinical risk models. The proteomic signature of incident AF consisted of 76 proteins, of which 63 (83%) were novel and 29 (38%) were replicated in CHS. The signature included both N-terminal prohormone of brain natriuretic peptide (NT-proBNP)-dependent (e.g. CHST15, ATP1B1, and SVEP1) and independent components (e.g. ASPN, AKR1B, and LAMA1/LAMB1/LAMC1). Nine causal candidates were identified (TAGLN, WARS, CHST15, CHMP3, COL15A1, DUSP13, MANBA, QSOX2, and SRL). The reverse causal analysis suggested that most AF-associated proteins were affected by the genetic liability to AF. N-terminal prohormone of brain natriuretic peptide improved the prediction of incident AF events close to baseline with further improvements gained by the AF-PRS at all time points. CONCLUSION: The AF proteomic signature includes biologically relevant proteins, some of which may be causal. It mainly reflects an NT-proBNP-dependent consequence of the genetic liability to AF. N-terminal prohormone of brain natriuretic peptide is a promising marker for incident AF in the short term, but risk assessment incorporating a PRS may improve long-term risk assessment.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Peptídeo Natriurético Encefálico , Biomarcadores , Prognóstico , Estudos Prospectivos , Proteômica , Fatores de Risco , Fragmentos de Peptídeos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Complexos Endossomais de Distribuição Requeridos para Transporte
12.
Biol Psychiatry Glob Open Sci ; 3(3): 490-499, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519456

RESUMO

Background: Plasma amyloid-ß (Aß) (Aß42, Aß40, and Aß42/Aß40), biomarkers of the Alzheimer's form of dementia, are under consideration for clinical use. The associations of these peptides with circulating proteins may identify novel plasma biomarkers of dementia and inform peripheral factors influencing the levels of these peptides. Methods: We analyzed the association of these 3 plasma Aß measures with 4638 circulating proteins among a subset of the participants of the Atherosclerosis Risk in Communities (ARIC) study (midlife: n = 1955; late life: n = 2082), related the Aß-associated proteins with incident dementia in the overall ARIC cohort (midlife: n = 11,069, late life: n = 4110) with external replication in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study (n = 4973), estimated the proportion of Aß variance explained, and conducted enrichment analyses to characterize the proteins associated with the plasma Aß peptides. Results: At midlife, of the 296 Aß-associated proteins, 8 were associated with incident dementia from midlife and late life in the ARIC study, and NPPB, IBSP, and THBS2 were replicated in the AGES-Reykjavik Study. At late life, of the 34 Aß-associated proteins, none were associated with incident dementia at midlife, and kidney function explained 10%, 12%, and 0.2% of the variance of Aß42, Aß40, and Aß42/Aß40, respectively. Aß42-associated proteins at midlife were found to be enriched in the liver, and those at late life were found to be enriched in the spleen. Conclusions: This study identifies circulating proteins associated with plasma Aß levels and incident dementia and informs peripheral factors associated with plasma Aß levels.

14.
Nat Commun ; 14(1): 2533, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137910

RESUMO

We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Camundongos , Animais , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Lipídeos , Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo
15.
Nat Biotechnol ; 41(3): 399-408, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36593394

RESUMO

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.


Assuntos
Aprendizado Profundo , Diabetes Mellitus Tipo 2 , Humanos , Algoritmos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética
16.
Nat Commun ; 13(1): 7121, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402758

RESUMO

Type 2 diabetes (T2D) has a heterogeneous etiology influencing its progression, treatment, and complications. A data driven cluster analysis in European individuals with T2D previously identified four subtypes: severe insulin deficient (SIDD), severe insulin resistant (SIRD), mild obesity-related (MOD), and mild age-related (MARD) diabetes. Here, the clustering approach was applied to individuals with T2D from the Qatar Biobank and validated in an independent set. Cluster-specific signatures of circulating metabolites and proteins were established, revealing subtype-specific molecular mechanisms, including activation of the complement system with features of autoimmune diabetes and reduced 1,5-anhydroglucitol in SIDD, impaired insulin signaling in SIRD, and elevated leptin and fatty acid binding protein levels in MOD. The MARD cluster was the healthiest with metabolomic and proteomic profiles most similar to the controls. We have translated the T2D subtypes to an Arab population and identified distinct molecular signatures to further our understanding of the etiology of these subtypes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteômica , Árabes , Insulina
17.
PLoS One ; 17(9): e0273855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048886

RESUMO

Recent studies indicate that the interplay between diet, intestinal microbiota composition, and intestinal permeability can impact mental health. More than 10% of children and adolescents in Iceland suffer from mental disorders, and rates of psychotropics use are very high. The aim of this novel observational longitudinal case-control study, "Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study)" is to contribute to the promotion of treatment options for children and adolescents diagnosed with mental disorders through identification of patterns that may affect the symptoms. All children and adolescents, 5-15 years referred to the outpatient clinic of the Child and Adolescent Psychiatry Department at The National University Hospital in Reykjavik, Iceland, for one year (n≈150) will be invited to participate. There are two control groups, i.e., sex-matched children from the same postal area (n≈150) and same parent siblings (full siblings) in the same household close in age +/- 3 years (n<150). A three-day food diary, rating scales for mental health, and multiple questionnaires will be completed. Biosamples (fecal-, urine-, saliva-, blood samples, and buccal swab) will be collected and used for 16S rRNA gene amplicon sequencing of the oral and gut microbiome, measurements of serum factors, quantification of urine metabolites and host genotype, respectively. For longitudinal follow-up, data collection will be repeated after three years in the same groups. Integrative analysis of diet, gut microbiota, intestinal permeability, serum metabolites, and mental health will be conducted applying bioinformatics and systems biology approaches. Extensive population-based data of this quality has not been collected before, with collection repeated in three years' time, contributing to the high scientific value. The MMM-study follows the "Strengthening the Reporting of Observational Studies in Epidemiology" (STROBE) guidelines. Approval has been obtained from the Icelandic National Bioethics Committee, and the study is registered with Clinicaltrials.gov. The study will contribute to an improved understanding of the links between diet, gut microbiota and mental health in children through good quality study design by collecting information on multiple components, and a longitudinal approach. Furthermore, the study creates knowledge on possibilities for targeted and more personalized dietary and lifestyle interventions in subgroups. Trial registration numbers: VSN-19-225 & NCT04330703.


Assuntos
Microbioma Gastrointestinal , Saúde Mental , Adolescente , Estudos de Casos e Controles , Criança , Microbioma Gastrointestinal/genética , Humanos , Refeições , Estudos Observacionais como Assunto , RNA Ribossômico 16S/genética
18.
Nat Commun ; 13(1): 3401, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697682

RESUMO

Age-related macular degeneration (AMD) is one of the most common causes of visual impairment in the elderly, with a complex and still poorly understood etiology. Whole-genome association studies have discovered 34 genomic regions associated with AMD. However, the genes and cognate proteins that mediate the risk, are largely unknown. In the current study, we integrate levels of 4782 human serum proteins with all genetic risk loci for AMD in a large population-based study of the elderly, revealing many proteins and pathways linked to the disease. Serum proteins are also found to reflect AMD severity independent of genetics and predict progression from early to advanced AMD after five years in this population. A two-sample Mendelian randomization study identifies several proteins that are causally related to the disease and are directionally consistent with the observational estimates. In this work, we present a robust and unique framework for elucidating the pathobiology of AMD.


Assuntos
Degeneração Macular , Proteogenômica , Idoso , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Análise da Randomização Mendeliana , Fatores de Risco
19.
Am J Respir Crit Care Med ; 206(3): 337-346, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438610

RESUMO

Rationale: Knowledge on biomarkers of interstitial lung disease is incomplete. Interstitial lung abnormalities (ILAs) are radiologic changes that may present in its early stages. Objectives: To uncover blood proteins associated with ILAs using large-scale proteomics methods. Methods: Data from two prospective cohort studies, the AGES-Reykjavik (Age, Gene/Environment Susceptibility-Reykjavik) study (N = 5,259) for biomarker discovery and the COPDGene (Genetic Epidemiology of COPD) study (N = 4,899) for replication, were used. Blood proteins were measured using DNA aptamers, targeting more than 4,700 protein analytes. The association of proteins with ILAs and ILA progression was assessed with regression modeling, as were associations with genetic risk factors. Adaptive Least Absolute Shrinkage and Selection Operator models were applied to bootstrap data samples to discover sets of proteins predictive of ILAs and their progression. Measurements and Main Results: Of 287 associations, SFTPB (surfactant protein B) (odds ratio [OR], 3.71 [95% confidence interval (CI), 3.20-4.30]; P = 4.28 × 10-67), SCGB3A1 (Secretoglobin family 3A member 1) (OR, 2.43 [95% CI, 2.13-2.77]; P = 8.01 × 10-40), and WFDC2 (WAP four-disulfide core domain protein 2) (OR, 2.42 [95% CI, 2.11-2.78]; P = 4.01 × 10-36) were most significantly associated with ILA in AGES-Reykjavik and were replicated in COPDGene. In AGES-Reykjavik, concentrations of SFTPB were associated with the rs35705950 MUC5B (mucin 5B) promoter polymorphism, and SFTPB and WFDC2 had the strongest associations with ILA progression. Multivariate models of ILAs in AGES-Reykjavik, ILAs in COPDGene, and ILA progression in AGES-Reykjavik had validated areas under the receiver operating characteristic curve of 0.880, 0.826, and 0.824, respectively. Conclusions: Novel, replicated associations of ILA, its progression, and genetic risk factors with numerous blood proteins are demonstrated as well as machine-learning-based models with favorable predictive potential. Several proteins are revealed as potential markers of early fibrotic lung disease.


Assuntos
Doenças Pulmonares Intersticiais , Anormalidades do Sistema Respiratório , Predisposição Genética para Doença , Humanos , Pulmão , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/genética , Estudos Prospectivos , Proteômica , Tomografia Computadorizada por Raios X
20.
Cell Rep Med ; 3(1): 100477, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106505

RESUMO

The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired ß cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Adulto , Diabetes Mellitus Tipo 2/genética , Progressão da Doença , Feminino , Seguimentos , Predisposição Genética para Doença , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...