Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(4): e1009430, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33822828

RESUMO

In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of uninfected, asymptomatic Malian individuals before the malaria season revealed that monocytes of adults produced lower levels of inflammatory cytokines (IL-1ß, IL-6 and TNF) in response to Pf-iRBC stimulation compared to monocytes of Malian children and malaria-naïve U.S. adults. Moreover, monocytes of Malian children produced lower levels of IL-1ß and IL-6 following Pf-iRBC stimulation compared to 4-6-month-old infants. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. Trial Registration: ClinicalTrials.gov NCT01322581.


Assuntos
Malária Falciparum/imunologia , Malária/imunologia , Monócitos/metabolismo , Fenótipo , Adulto , Criança , Pré-Escolar , Citocinas/metabolismo , Eritrócitos/metabolismo , Humanos , Lactente , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/metabolismo , Malária/sangue , Malária Falciparum/sangue , Monócitos/imunologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo
2.
Front Immunol ; 11: 575103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123155

RESUMO

We have previously shown that a variant of the TNFSF13B gene that we called BAFF-var increases the production of the cytokine BAFF, upregulating humoral immunity and increasing the risk for certain autoimmune diseases. In addition, genetic population signatures revealed that BAFF-var was evolutionarily advantageous, most likely by increasing resistance to malaria infection, which is a prime candidate for selective pressure. To evaluate whether the increased soluble BAFF (sBAFF) production confers protection, we experimentally assessed the role of BAFF-var in response to malaria antigens. Lysates of erythrocytes infected with Plasmodium falciparum (iRBCs) or left uninfected (uRBCs, control) were used to treat peripheral blood mononuclear cells (PBMCs) with distinct BAFF genotypes. The PBMCs purified from BAFF-var donors and treated with iRBCs showed different levels of specific cells, immunoglobulins, and cytokines as compared with BAFF-WT. In particular, a relevant differential effect on mucosal immunity B subpopulations have been observed. These findings point to specific immune cells and molecules through which the evolutionary selected BAFF-var may have improved fitness during P. falciparum infection.


Assuntos
Fator Ativador de Células B/metabolismo , Linfócitos B/metabolismo , Eritrócitos/parasitologia , Evolução Molecular , Imunidade nas Mucosas , Malária Falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Fator Ativador de Células B/genética , Linfócitos B/imunologia , Linfócitos B/parasitologia , Células Cultivadas , Feminino , Aptidão Genética , Genótipo , Interações Hospedeiro-Parasita , Humanos , Itália , Malária Falciparum/sangue , Malária Falciparum/genética , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Regulação para Cima
3.
bioRxiv ; 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33106806

RESUMO

In malaria-naïve children and adults, Plasmodium falciparum -infected red blood cells ( Pf -iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf -iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of monocytes collected from uninfected, asymptomatic Malian individuals before the malaria season revealed an inverse relationship between age and Pf -iRBC-inducible inflammatory cytokine (IL-1ß, IL-6 and TNF) production, whereas Malian infants and malaria-naïve U.S. adults produced similarly high levels of inflammatory cytokines. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf -iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. These findings also suggest that past malaria exposure could mitigate monocyte-associated immunopathology induced by other pathogens such as SARS-CoV-2. AUTHOR SUMMARY: The malaria parasite is mosquito-transmitted and causes fever and other inflammatory symptoms while circulating in the bloodstream. However, in regions of high malaria transmission the parasite is less likely to cause fever as children age and enter adulthood, even though adults commonly have malaria parasites in their blood. Monocytes are cells of the innate immune system that secrete molecules that cause fever and inflammation when encountering microorganisms like malaria. Although inflammation is critical to initiating normal immune responses, too much inflammation can harm infected individuals. In Mali, we conducted a study of a malaria-exposed population from infants to adults and found that participants' monocytes produced less inflammation as age increases, whereas monocytes of Malian infants and U.S. adults, who had never been exposed to malaria, both produced high levels of inflammatory molecules. Accordingly, monocytes exposed to malaria in the laboratory became less inflammatory when re-exposed to malaria again later, and these monocytes 'turned down' their inflammatory genes. This study helps us understand how people become immune to inflammatory symptoms of malaria and may also help explain why people in malaria-endemic areas appear to be less susceptible to the harmful effects of inflammation caused by other pathogens such as SARS-CoV-2.

4.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31907195

RESUMO

Natural killer (NK) cells are key effector cells of innate resistance capable of destroying tumors and virus-infected cells through cytotoxicity and rapid cytokine production. The control of NK cell responses is complex and only partially understood. PD-1 is an inhibitory receptor that regulates T cell function, but a role for PD-1 in regulating NK cell function is only beginning to emerge. Here, we investigated PD-1 expression on NK cells in children and adults in Mali in a longitudinal analysis before, during, and after infection with Plasmodium falciparum malaria. We found that NK cells transiently upregulate PD-1 expression and interleukin-6 (IL-6) production in some individuals during acute febrile malaria. Furthermore, the percentage of PD-1 expressing NK cells increases with age and cumulative malaria exposure. Consistent with this, NK cells of malaria-naive adults upregulated PD-1 following P. falciparum stimulation in vitro Additionally, functional in vitro studies revealed that PD-1 expression on NK cells is associated with diminished natural cytotoxicity but enhanced antibody-dependent cellular cytotoxicity (ADCC). These data indicate that PD-1+ NK cells expand in the context of chronic immune activation and suggest that PD-1 may contribute to skewing NK cells toward enhanced ADCC during infections such as malaria.


Assuntos
Células Matadoras Naturais/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/patogenicidade , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Fatores Etários , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antígeno CD56/metabolismo , Linhagem Celular , Criança , Proteínas Ligadas por GPI/metabolismo , Humanos , Interleucina-6/metabolismo , Células K562 , Estudos Longitudinais , Malária/imunologia , Camundongos , Receptores de IgG/metabolismo
5.
Immunity ; 51(4): 750-765.e10, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492649

RESUMO

Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment, upregulation of T helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses, and p53 activation associated with control of malarial fever and coordinated with Pf-specific immunoglobulin G (IgG) and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.


Assuntos
Linfócitos B/imunologia , Proteínas Sanguíneas/metabolismo , Inflamação/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/metabolismo , Criança , Pré-Escolar , Resistência à Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Receptores Fc/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Adulto Jovem
6.
PLoS Negl Trop Dis ; 8(7): e2995, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25032977

RESUMO

In India the sand fly, Phlebotomus argentipes, transmitted parasitic disease termed kala-azar is caused by Leishmania donovani (LD) in humans. These immune-evading parasites have increasingly developed resistance to the drug sodium antimony gluconate in endemic regions. Lack of early diagnosis methods for the disease limits the information available regarding the early interactions of this parasite with either human tissues or cell lineages. We reasoned that peripheral blood mononuclear cells (PBMCs) from healthy human beings could help compare some of their immune signatures once they were exposed for up to 8 days, to either pentavalent antimony sensitive (Sb(S)-LD) or resistant (Sb(R)-LD) Leishmania donovani isolates. At day 2, PBMC cultures exposed to Sb(S)-LD and Sb(R)-LD stationary phase promastigotes had four and seven fold higher frequency of IL-10 secreting monocyte-macrophage respectively, compared to cultures unexposed to parasites. Contrasting with the CD4(+)CD25-CD127- type-1 T-regulatory (Tr1) cell population that displayed similar features whatever the culture conditions, there was a pronounced increase in the IL-10 producing CD4(+)CD25(+)CD127low/- inducible T-regulatory cells (iTregs) in the PBMC cultures sampled at day 8 post addition of Sb(R)-LD. Sorted iTregs from different cultures on day 8 were added to anti-CD3/CD28 induced naïve PBMCs to assess their suppressive ability. We observed that iTregs from Sb(R)-LD exposed PBMCs had more pronounced suppressive ability compared to Sb(S)-LD counterpart on a per cell basis and is dependent on both IL-10 and TGF-ß, whereas IL-10 being the major factor contributing to the suppressive ability of iTregs sorted from PBMC cultures exposed to Sb(S)-LD. Of note, iTreg population frequency value remained at the basal level after addition of genetically modified Sb(R)-LD lacking unique terminal sugar in surface glycan. Even with limitations of this artificial in vitro model of L. donovani-human PBMC interactions, the present findings suggest that Sb(R)-LD have higher immunomodulatory capacity which may favour aggressive pathology.


Assuntos
Antimônio/farmacologia , Antiprotozoários/farmacologia , Interleucina-10/imunologia , Leishmania donovani/imunologia , Leucócitos Mononucleares/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Células Cultivadas , Humanos
7.
Infect Immun ; 82(2): 607-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478076

RESUMO

Leishmania donovani causes visceral leishmaniasis (VL) by infecting the monocyte/macrophage lineage and residing inside specialized structures known as parasitophorous vacuoles. The protozoan parasite has adopted several means of escaping the host immune response, with one of the major methods being deactivation of host macrophages. Previous reports highlight dampened macrophage signaling, defective antigen presentation due to increased membrane fluidity, and the downregulation of several genes associated with L. donovani infection. We have reported previously that the defective antigen presentation in infected hamsters could be corrected by a single injection of a cholesterol-containing liposome. Here we show that cholesterol in the form of a liposomal formulation can stimulate the innate immune arm and reactivate macrophage function. Augmented levels of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI), along with proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), corroborate intracellular parasite killing. Cholesterol incorporation kinetics is favored in infected macrophages more than in normal macrophages. Such an enhanced cholesterol uptake is associated with preferential apoptosis of infected macrophages in an endoplasmic reticulum (ER) stress-dependent manner. All these events are coupled with mitogen-activated protein (MAP) kinase activation, while inhibition of such pathways resulted in increased parasite loads. Hence, liposomal cholesterol is a potential facilitator of the macrophage effector function in favor of the host, independently of the T-cell arm.


Assuntos
Colesterol/metabolismo , Fatores Imunológicos/metabolismo , Leishmania donovani/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/parasitologia , Animais , Sobrevivência Celular , Citocinas/metabolismo , Lipossomos/metabolismo , Macrófagos Peritoneais/metabolismo , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Sci Transl Med ; 5(202): 202ra121, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24027025

RESUMO

Leishmaniasis is a severe infectious disease. Drugs used for leishmaniasis are very toxic, and no vaccine is available. We found that the hemoglobin receptor (HbR) of Leishmania was conserved across various strains of Leishmania, and anti-HbR antibody could be detected in kala-azar patients' sera. Our results showed that immunization with HbR-DNA induces complete protection against virulent Leishmania donovani infection in both BALB/c mice and hamsters. Moreover, HbR-DNA immunization stimulated the production of protective cytokines like interferon-γ (IFN-γ), interleukin-12 (IL-12), and tumor necrosis factor-α (TNF-α) with concomitant down-regulation of disease-promoting cytokines like IL-10 and IL-4. HbR-DNA vaccination also induced a protective response by generating multifunctional CD4(+) and CD8(+) T cells. All HbR-DNA-vaccinated hamsters showed sterile protection and survived during an experimental period of 8 months. These findings demonstrate the potential of HbR as a vaccine candidate against visceral leishmaniasis.


Assuntos
DNA/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/prevenção & controle , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Vacinação , Animais , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Sequência Conservada , Cricetinae/imunologia , Cricetinae/parasitologia , Humanos , Imunidade/imunologia , Imunoglobulina G/biossíntese , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia
9.
Vaccine ; 31(15): 1905-15, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23499564

RESUMO

BACKGROUND: Emergence of resistance against commonly available drugs poses a major threat in the treatment of visceral leishmaniasis (VL), particularly in the Indian subcontinent. Absence of any licensed vaccine against VL emphasizes the urgent need to develop an effective alternative vaccination strategy. METHODOLOGY: We developed a novel heterologous prime boost immunization strategy using kinetoplastid membrane protein-11 (KMP-11) DNA priming followed by boosting with recombinant vaccinia virus (rVV) expressing the same antigen. The efficacy of this vaccination regimen in a murine and hamster model of visceral leishmaniasis caused by both antimony resistant (Sb-R) and sensitive (Sb-S) Leishmania (L.) donovani is examined. RESULT: Heterologous prime-boost (KMP-11 DNA/rVV) vaccination was able to protect mice and hamsters from experimental VL induced by both Sb-S and Sb-R-L. (L.) donovani isolates. Parasite burden is kept significantly low in the vaccinated groups even after 60 days post-infection in hamsters, which are extremely susceptible to VL. Protection in mice is correlated with strong cellular and humoral immune responses. Generation of polyfunctional CD8(+) T cell was observed in vaccinated groups, which is one of the most important prerequisite for successful vaccination against VL. Protection was accompanied with generation of antigen specific CD4(+) and CD8(+) cells that produced effector cytokines such as IFN-γ, IL-2 and TNF-α. KMP-11-DNA/rVV vaccination also developed strong cytotoxic response and reversed T-cell impairment to induce antigen specific T cell proliferation. CONCLUSION: KMP-11 is a unique antigen with high epitope density. Heterologous prime boost vaccination activates CD4(+) and CD8(+) T-cell mediated immunity to confer resistance to VL. This immunization method also produces high quality T-cells secreting multiple effector cytokines thus enhancing durability of the immune response. Thus the vaccination regime as described in the present study could provide a potent strategy for future anti-leishmanial vaccine development.


Assuntos
Antimônio/farmacologia , Imunidade Celular/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/prevenção & controle , Glicoproteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Vacinas de DNA/imunologia , Vaccinia virus/genética , Animais , Cricetinae , Apresentação Cruzada , Citocinas/imunologia , Resistência a Medicamentos , Feminino , Imunidade Humoral/imunologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Vacinas Protozoárias/genética , Linfócitos T/citologia , Linfócitos T/imunologia , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
10.
J Lipid Res ; 53(12): 2560-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23060454

RESUMO

Leishmania donovani (LD), the causative agent of visceral leishmaniasis (VL), extracts membrane cholesterol from macrophages and disrupts lipid rafts, leading to their inability to stimulate T cells. Restoration of membrane cholesterol by liposomal delivery corrects the above defects and offers protection in infected hamsters. To reinforce further the protective role of cholesterol in VL, mice were either provided a high-cholesterol (atherogenic) diet or underwent statin treatment. Subsequent LD infection showed that an atherogenic diet is associated with protection, whereas hypocholesterolemia due to statin treatment confers susceptibility to the infection. This observation was validated in apolipoprotein E knockout mice (AE) mice that displayed intrinsic hypercholesterolemia with hepatic granuloma, production of host-protective cytokines, and expansion of antileishmanial CD8(+)IFN- γ (+) and CD8(+)IFN- γ (+)TNF- α (+) T cells in contrast to the wild-type C57BL/6 (BL/6) mice when infected with LD. Normal macrophages from AE mice (N-AE-MΦ) showed 3-fold higher membrane cholesterol coupled with increased fluorescence anisotropy (FA) compared with wild-type macrophage (N-BL/6-MΦ). Characterization of in vitro LD-infected AE macrophage (LD-AE-MΦ) revealed intact raft architecture and ability to stimulate T cells, which were compromised in LD-BL/6-MΦ. This study clearly indicates that hypercholesterolemia, induced intrinsically or extrinsically, can control the pathogenesis of VL by modulating immune repertoire in favor of the host.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Hiperlipidemias/metabolismo , Leishmania donovani/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/prevenção & controle , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Citocinas/imunologia , Granuloma , Hiperlipidemias/imunologia , Hiperlipidemias/parasitologia , Sinapses Imunológicas/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Fígado/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Auxiliares-Indutores/imunologia
11.
Infect Immun ; 77(6): 2330-42, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19289510

RESUMO

The membrane fluidity of antigen-presenting cells (APCs) has a significant bearing on T-cell-stimulating ability and is dependent on the cholesterol content of the membrane. The relationship, if any, between membrane fluidity and defective cell-mediated immunity in visceral leishmaniasis has been investigated. Systemic administration of cholesterol by liposome delivery (cholesterol liposomes) in Leishmania donovani-infected hamsters was found to cure the infection. Splenic macrophages as a prototype of APCs in infected hamsters had decreased membrane cholesterol and an inability to drive T cells, which was corrected by cholesterol liposome treatment. The effect was cholesterol specific because liposomes made up of the analogue 4-cholesten-3-one provided almost no protection. Infection led to increases in interleukin-10 (IL-10), transforming growth factor beta, and IL-4 signals and concomitant decreases in gamma interferon (IFN-gamma), tumor necrosis factor alpha, and inducible NO synthase signals, which reverted upon cholesterol liposome treatment. The antileishmanial T-cell repertoire, whose expansion appeared to be associated with protection, was presumably type Th1, as shown by enhanced IFN-gamma signals and the predominance of the immunoglobulin G2 isotype. The protected group produced significantly more reactive oxygen species and NO than the infected groups, which culminated in killing of L. donovani parasites. Therefore, cholesterol liposome treatment may be yet another simple strategy to enhance the cell-mediated immune response to L. donovani infection. To our knowledge, this is the first report on the therapeutic effect of cholesterol liposomes in any form of the disease.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Leishmania/imunologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Fluidez de Membrana/efeitos dos fármacos , Animais , Membrana Celular/química , Colesterol/análise , Colesterol/uso terapêutico , Cricetinae , Citocinas/metabolismo , Lipossomos/uso terapêutico , Macrófagos/química , Macrófagos/imunologia , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...