Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
mSphere ; : e0046724, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037263

RESUMO

Systemic candidiasis remains a significant public health concern worldwide, with high mortality rates despite available antifungal drugs. Drug-resistant strains add to the urgency for alternative therapies. In this context, vaccination has reemerged as a prominent immune-based strategy. Extracellular vesicles (EVs), nanosized lipid bilayer particles, carry a diverse array of native fungal antigens, including proteins, nucleic acids, lipids, and glycans. Previous studies from our laboratory demonstrated that Candida albicans EVs triggered the innate immune response, activating bone marrow-derived dendritic cells (BMDCs) and potentially acting as a bridge between innate and adaptive immunity. Vaccination with C. albicans EVs induced the production of specific antibodies, modulated cytokine production, and provided protection in immunosuppressed mice infected with lethal C. albicans inoculum. To elucidate the mechanisms underlying EV-induced immune activation, our study investigated pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) involved in EVs-phagocyte engagement. EVs from wild-type and mutant C. albicans strains with truncated mannoproteins were compared for their ability to stimulate BMDCs. Our findings revealed that EV decoration with O- and N-linked mannans and the presence of ß-1,3-glucans and chitin oligomers may modulate the activation of specific PRRs, in particular Toll-like receptor 4 (TLR4) and dectin-1. The protective effect of vaccination with wild-type EVs was found to be dependent on TLR4. These results suggest that fungal EVs can be harnessed in vaccine formulations to selectively activate PRRs in phagocytes, offering potential avenues for combating or preventing candidiasis.IMPORTANCESystemic candidiasis is a serious global health concern with high mortality rates and growing drug resistance. Vaccination offers a promising solution. A unique approach involves using tiny lipid-coated particles called extracellular vesicles (EVs), which carry various fungal components. Previous studies found that Candida albicans EVs activate the immune response and may bridge the gap between innate and adaptive immunity. To understand this better, we investigated how these EVs activate immune cells. We demonstrated that specific components on EV surfaces, such as mannans and glucans, interact with receptors on immune cells, including Toll-like receptor 4 (TLR4) and dectin-1. Moreover, vaccinating with these EVs led to strong immune responses and full protection in mice infected with Candida. This work shows how harnessing fungal EVs might lead to effective vaccines against candidiasis.

2.
Mem Inst Oswaldo Cruz ; 119: e230186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045993

RESUMO

BACKGROUND: Giant viruses have brought new insights into different aspects of virus-cell interactions. The resulting cytopathic effects from these interactions are one of the main aspects of infection assessment in a laboratory routine, mainly reflecting on the morphological features of an infected cell. OBJECTIVES: In this work, we follow the entire kinetics of the cytopathic effect in cells infected by viruses of the Mimiviridae family, spatiotemporally quantifying typical features such as cell roundness, loss of motility, decrease in cell area and cell lysis. METHODS: Infections by Acanthamoeba polyphaga mimivirus (APMV), Tupanvirus (TPV) and M4 were carried out at multiplicity of infection (MOI) 1 and MOI 10 in Acanthamoeba castellanii. Monitoring of infections was carried out using time lapse microscopy for up to 72 hours. The images were analyzed using ImageJ software. FINDINGS: The data obtained indicate that APMV is the slowest virus in inducing the cytopathic effects of rounding, decrease in cell area, mobility and cell lysis. However, it is the only virus whose MOI increase accelerates the lysis process of infected cells. In turn, TPV and M4 rapidly induce morphological and behavioral changes. MAIN CONCLUSIONS: Our results indicate that mimiviruses induce different temporal responses within the host cell and that it is possible to use these kinetic data to facilitate the understanding of infection by these viruses.


Assuntos
Acanthamoeba castellanii , Efeito Citopatogênico Viral , Mimiviridae , Mimiviridae/fisiologia , Cinética , Acanthamoeba castellanii/virologia
3.
Appl Environ Microbiol ; 90(2): e0173623, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259076

RESUMO

In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal ß-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface ß-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a ß-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble ß-1,3-glucan substantially inhibited this adhesion, indicating the involvement of ß-1,3-glucan recognition. Biotinylated ß-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the ß-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding ß-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to ß-1,3-glucans. These findings underscore the complexity of binding via ß-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of ß-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for ß-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.


Assuntos
Acanthamoeba castellanii , Amoeba , beta-Glucanas , Amoeba/metabolismo , Manose/metabolismo , Proteômica , beta-Glucanas/metabolismo , Glucanos/metabolismo , Histoplasma/metabolismo
4.
Mem. Inst. Oswaldo Cruz ; 119: e230186, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564815

RESUMO

BACKGROUND Giant viruses have brought new insights into different aspects of virus-cell interactions. The resulting cytopathic effects from these interactions are one of the main aspects of infection assessment in a laboratory routine, mainly reflecting on the morphological features of an infected cell. OBJECTIVES In this work, we follow the entire kinetics of the cytopathic effect in cells infected by viruses of the Mimiviridae family, spatiotemporally quantifying typical features such as cell roundness, loss of motility, decrease in cell area and cell lysis. METHODS Infections by Acanthamoeba polyphaga mimivirus (APMV), Tupanvirus (TPV) and M4 were carried out at multiplicity of infection (MOI) 1 and MOI 10 in Acanthamoeba castellanii. Monitoring of infections was carried out using time lapse microscopy for up to 72 hours. The images were analyzed using ImageJ software. FINDINGS The data obtained indicate that APMV is the slowest virus in inducing the cytopathic effects of rounding, decrease in cell area, mobility and cell lysis. However, it is the only virus whose MOI increase accelerates the lysis process of infected cells. In turn, TPV and M4 rapidly induce morphological and behavioral changes. MAIN CONCLUSIONS Our results indicate that mimiviruses induce different temporal responses within the host cell and that it is possible to use these kinetic data to facilitate the understanding of infection by these viruses.

5.
J Fungi (Basel) ; 9(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998859

RESUMO

Histoplasma capsulatum is the causative agent of histoplasmosis. Treating this fungal infection conventionally has significant limitations, prompting the search for alternative therapies. In this context, fungal extracellular vesicles (EVs) hold relevant potential as both therapeutic agents and targets for the treatment of fungal infections. To explore this further, we conducted a study using pharmacological inhibitors of chitinase (methylxanthines) to investigate their potential to reduce EV release and its subsequent impact on fungal virulence in an in vivo invertebrate model. Our findings revealed that a subinhibitory concentration of the methylxanthine, caffeine, effectively reduces EV release, leading to a modulation of H. capsulatum virulence. To the best of our knowledge, this is the first reported instance of a pharmacological inhibitor that reduces fungal EV release without any observed fungicidal effects.

6.
J Fungi (Basel) ; 9(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36983524

RESUMO

The genus Fonsecaea is one of the etiological agents of chromoblastomycosis (CBM), a chronic subcutaneous disease that is difficult to treat. This work aimed to evaluate the effects of copper(II), manganese(II) and silver(I) complexes coordinated with 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione (phendione) on Fonsecaea spp. Our results revealed that most of these complexes were able to inhibit F. pedrosoi, F. monophora and F. nubica conidial viability with minimum inhibitory concentration (MIC) values ranging from 0.6 to 100 µM. The most effective complexes against F. pedrosoi planktonic conidial cells, the main etiologic agent of CBM, were [Ag(phen)2]ClO4 and [Ag2(3,6,9-tdda)(phen)4].EtOH, (tdda: 3,6,9-trioxaundecanedioate), displaying MIC values equal to 1.2 and 0.6 µM, respectively. These complexes were effective in reducing the viability of F. pedrosoi biofilm formation and maturation. Silver(I)-tdda-phen, combined with itraconazole, reduced the viability and extracellular matrix during F. pedrosoi biofilm development. Moreover, both silver(I) complexes inhibited either metallo- or aspartic-type peptidase activities of F. pedrosoi as well as its conidia into mycelia transformation and melanin production. In addition, the complexes induced the production of intracellular reactive oxygen species in F. pedrosoi. Taken together, our data corroborate the antifungal action of metal-phen complexes, showing they represent a therapeutic option for fungal infections, including CBM.

8.
J Fungi (Basel) ; 8(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36294569

RESUMO

The increase in the prevalence and severity of fungal infections and the resistance to available antifungals highlights the imperative need for novel therapeutics and the search for new targets. High-content screening of libraries containing hundreds of compounds is a powerful strategy for searching for new drug candidates. In this study, we screened the Pandemic Response Box library (Medicines for Malaria Venture) of 400 diverse molecules against the Sporothrix pathogenic species. The initial screen identified twenty-four candidates that inhibited the growth of Sporothrix brasiliensis by more than 80%. Some of these compounds are known to display antifungal activity, including olorofim (MMV1782354), a new antifungal drug. Olorofim inhibited and killed the yeasts of S. brasiliensis, S. schenckii, and S. globosa at concentrations lower than itraconazole, and it also showed antibiofilm activity. According to the results obtained by fluorimetry, electron microscopy, and particle characterization analyses, we observed that olorofim induced profound alterations on the cell surface and cell cycle arrest in S. brasiliensis yeasts. We also verified that these morphophysiological alterations impaired their ability to adhere to keratinocytes in vitro. Our results indicate that olorofim is a promising new antifungal against sporotrichosis agents.

10.
Front Cell Infect Microbiol ; 12: 858979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711659

RESUMO

Acanthamoeba castellanii (Ac) is a species of free-living amoebae (FLAs) that has been widely applied as a model for the study of host-parasite interactions and characterization of environmental symbionts. The sharing of niches between Ac and potential pathogens, such as fungi, favors associations between these organisms. Through predatory behavior, Ac enhances fungal survival, dissemination, and virulence in their intracellular milieu, training these pathogens and granting subsequent success in events of infections to more evolved hosts. In recent studies, our group characterized the amoeboid mannose binding proteins (MBPs) as one of the main fungal recognition pathways. Similarly, mannose-binding lectins play a key role in activating antifungal responses by immune cells. Even in the face of similarities, the distinct impacts and degrees of affinity of fungal recognition for mannose receptors in amoeboid and animal hosts are poorly understood. In this work, we have identified high-affinity ligands for mannosylated fungal cell wall residues expressed on the surface of amoebas and macrophages and determined the relative importance of these pathways in the antifungal responses comparing both phagocytic models. Mannose-purified surface proteins (MPPs) from both phagocytes showed binding to isolated mannose/mannans and mannosylated fungal cell wall targets. Although macrophage MPPs had more intense binding when compared to the amoeba receptors, the inhibition of this pathway affects fungal internalization and survival in both phagocytes. Mass spectrometry identified several MPPs in both models, and in silico alignment showed highly conserved regions between spotted amoeboid receptors (MBP and MBP1) and immune receptors (Mrc1 and Mrc2) and potential molecular mimicry, pointing to a possible convergent evolution of pathogen recognition mechanisms.


Assuntos
Acanthamoeba castellanii , Amoeba , Acanthamoeba castellanii/microbiologia , Amoeba/microbiologia , Animais , Antifúngicos , Parede Celular/metabolismo , Macrófagos/metabolismo , Manose/química , Camundongos , Trofozoítos/metabolismo
11.
mBio ; 13(3): e0030122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420476

RESUMO

In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro. By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were identified by gas chromatography-tandem mass spectrometry analysis as sesquiterpenes, diterpenes, and fatty acids. Remarkably, C. albicans EVs were also able to reverse filamentation. Finally, C. albicans cells treated with C. albicans EVs for 24 h lost their capacity to penetrate agar and were avirulent when inoculated into Galleria mellonella. Our results indicate that fungal EVs can regulate yeast-to-hypha differentiation, thereby inhibiting biofilm formation and attenuating virulence. IMPORTANCE The ability to undergo morphological changes during adaptation to distinct environments is exploited by Candida albicans and has a direct impact on biofilm formation and virulence. Morphogenesis is controlled by a diversity of stimuli, including osmotic stress, pH, starvation, presence of serum, and microbial components, among others. Apart from external inducers, C. albicans also produces autoregulatory substances. Farnesol and tyrosol are examples of quorum-sensing molecules (QSM) released by C. albicans to regulate yeast-to-hypha conversion. Here, we demonstrate that fungal EVs are messengers impacting biofilm formation, morphogenesis, and virulence in C. albicans. The major players exported in C. albicans EVs included sesquiterpenes, diterpenes, and fatty acids. The understanding of how C. albicans cells communicate to regulate physiology and pathogenesis can lead to novel therapeutic tools to combat candidiasis.


Assuntos
Candida albicans , Vesículas Extracelulares , Biofilmes , Ácidos Graxos/farmacologia , Hifas , Saccharomyces cerevisiae
12.
J Fungi (Basel) ; 7(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34682286

RESUMO

Histoplasmosis is a severe mycotic disease affecting thousands of immunocompetent and immunocompromised individuals with high incidence in Latin America, where the disease agents are Histoplasma capsulatum and Histoplasma suramericanum. In this work, we used whole-genome sequencing to infer the species diversity and the population structure of H. suramericanum in South America. We find evidence for strong population structure and little admixture within the species. Genome-level phylogenetic trees indicate the existence of at least three different discrete populations. We recovered the existence of a previously identified population, LAmB, and confirm that it is highly differentiated along the whole genome. We also find that H. suramericanum is composed of two populations, one in Northern South America, and another in the southern portion of the continent. Moreover, one of the lineages from the southern population is endemic to Rio de Janeiro and there was no association with clinical data and species isolated from patients with histoplasmosis. Our results point out the need to characterize the symptomatology of histoplasmosis caused by different species and lineages of Histoplasma spp.

14.
J Fungi (Basel) ; 7(4)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800694

RESUMO

The prevalence of fungal infections has increased in immunocompromised patients, leading to millions of deaths annually. Arachidonic acid (AA) metabolites, such as eicosanoids, play important roles in regulating innate and adaptative immune function, particularly since they can function as virulence factors enhancing fungal colonization and are produced by mammalian and lower eukaryotes, such as yeasts and other fungi (Candida albicans, Histoplasma capsulatum and Cryptococcus neoformans). C. albicans produces prostaglandins (PG), Leukotrienes (LT) and Resolvins (Rvs), whereas the first two have been well documented in Cryptococcus sp. and H. capsulatum. In this review, we cover the eicosanoids produced by the host and fungi during fungal infections. These fungal-derived PGs have immunomodulatory functions analogous to their mammalian counterparts. Prostaglandin E2 (PGE2) protects C. albicans and C. parapsilosis cells from the phagocytic and killing activity of macrophages. H. capsulatum PGs augment the fungal burden and host mortality rates in histoplasmosis. However, PGD2 potentiates the effects and production of LTB4, which is a very potent neutrophil chemoattractant that enhances host responses. Altogether, these data suggest that eicosanoids, mainly PGE2, may serve as a new potential target to combat diverse fungal infections.

15.
Front Fungal Biol ; 2: 643537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744119

RESUMO

Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, who often have some inflammatory condition and, therefore, end up using glucocorticoids, such as dexamethasone and methylprednisolone. Although the effects of this class of molecules during cryptococcosis have been investigated, their consequences for the biology of C. neoformans is less explored. Here, we studied the effects of dexamethasone and methylprednisolone on the metabolism and on the induction of virulence factors in C. neoformans. Our results showed that both glucocorticoids increased fungal cell proliferation and surface electronegativity but reduced capsule and secreted polysaccharide sizes, as well as capsule compaction, by decreasing the density of polysaccharide fibers. We also tested whether glucocorticoids could affect the fungal virulence in Galleria mellonella and mice. Although the survival rate of Galleria larvae increased, those from mice showed a tendency to decrease, with infected animals dying earlier after glucocorticoid treatments. The pathogenesis of spread of cryptococcosis and the interleukin secretion pattern were also assessed for lungs and brains of infected mice. While increases in the spread of the fungus to lungs were observed after treatment with glucocorticoids, a significant difference in brain was observed only for methylprednisolone, although a trend toward increasing was also observed for dexamethasone. Moreover, increases in both pulmonary and cerebral IL-10 production, reduction of IL-6 production but no changes in IL-4, IL-17, and INF-γ were also observed after glucocorticoid treatments. Finally, histopathological analysis confirmed the increase in number of fungal cells in lung and brain tissues of mice previously subjected to dexamethasone or methylprednisolone treatments. Together, our results provide compelling evidence for the effects of dexamethasone and methylprednisolone on the biology of C. neoformans and may have important implications for future clinical treatments, calling attention to the risks of using these glucocorticoids against cryptococcosis or in immunocompromised individuals.

16.
J Fungi (Basel) ; 6(4)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120893

RESUMO

Aspergillosis cases by Aspergillus fumigatus have increased, along with fungal resistance to antifungals, urging the development of new therapies. Passive immunization targeting common fungal antigens, such as chitin and ß-glucans, are promising and would eliminate the need of species-level diagnosis, thereby expediting the therapeutic intervention. However, these polysaccharides are poorly immunogenic. To overcome this drawback, we developed the lectin-Fc(IgG) fusion proteins, Dectin1-Fc(IgG2a), Dectin1-Fc(IgG2b) and wheat germ agglutinin (WGA)-Fc(IgG2a), based on their affinity to ß-1,3-glucan and chitooligomers, respectively. The WGA-Fc(IgG2a) previously demonstrated antifungal activity against Histoplasma capsulatum, Cryptococcus neoformans and Candida albicans. In the present work, we evaluated the antifungal properties of these lectin-Fc(s) against A. fumigatus. Lectin-Fc(IgG)(s) bound in a dose-dependent manner to germinating conidia and this binding increased upon conidia germination. Both lectin-Fc(IgG)(s) displayed in vitro antifungal effects, such as inhibition of conidia germination, a reduced length of germ tubes and a diminished biofilm formation. Lectin-Fc(IgG)(s) also enhanced complement deposition on conidia and macrophage effector functions, such as increased phagocytosis and killing of fungi. Finally, administration of the Dectin-1-Fc(IgG2b) and WGA-Fc(IgG2a) protected mice infected with A. fumigatus, with a 20% survival and a doubled life-span of the infected mice, which was correlated to a fungal burden reduction in lungs and brains of treated animals. These results confirm the potential of lectin-Fc(IgGs)(s) as a broad-spectrum antifungal therapeutic.

17.
Front Cell Infect Microbiol ; 10: 565571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585262

RESUMO

The cell wall is a ubiquitous structure in the fungal kingdom, with some features varying depending on the species. Additional external structures can be present, such as the capsule of Cryptococcus neoformans (Cn), its major virulence factor, mainly composed of glucuronoxylomannan (GXM), with anti-phagocytic and anti-inflammatory properties. The literature shows that other cryptococcal species and even more evolutionarily distant species, such as the Trichosporon asahii, T. mucoides, and Paracoccidioides brasiliensis can produce GXM-like polysaccharides displaying serological reactivity to GXM-specific monoclonal antibodies (mAbs), and these complex polysaccharides have similar composition and anti-phagocytic properties to cryptococcal GXM. Previously, we demonstrated that the fungus Histoplasma capsulatum (Hc) incorporates, surface/secreted GXM of Cn and the surface accumulation of the polysaccharide enhances Hc virulence in vitro and in vivo. In this work, we characterized the ability of Hc to produce cellular-attached (C-gly-Hc) and secreted (E-gly) glycans with reactivity to GXM mAbs. These C-gly-Hc are readily incorporated on the surface of acapsular Cn cap59; however, in contrast to Cn GXM, C-gly-Hc had no xylose and glucuronic acid in its composition. Mapping of recognized Cn GXM synthesis/export proteins confirmed the presence of orthologs in the Hc database. Evaluation of C-gly and E-gly of Hc from strains of distinct monophyletic clades showed serological reactivity to GXM mAbs, despite slight differences in their molecular dimensions. These C-gly-Hc and E-gly-Hc also reacted with sera of cryptococcosis patients. In turn, sera from histoplasmosis patients recognized Cn glycans, suggesting immunogenicity and the presence of cross-reacting antibodies. Additionally, C-gly-Hc and E-gly-Hc coated Cn cap59 were more resistant to phagocytosis and macrophage killing. C-gly-Hc and E-gly-Hc coated Cn cap59 were also able to kill larvae of Galleria mellonella. These GXM-like Hc glycans, as well as those produced by other pathogenic fungi, may also be important during host-pathogen interactions, and factors associated with their regulation are potentially important targets for the management of histoplasmosis.


Assuntos
Criptococose , Cryptococcus neoformans , Basidiomycota , Genótipo , Histoplasma , Humanos , Polissacarídeos
18.
Rev Iberoam Micol ; 36(4): 186-191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31757594

RESUMO

BACKGROUND: In a previous work we showed the feasibility of an interferon gamma release assay (IGRA) for detecting latent infection by Histoplasma capsulatum. While in that proof-of-concept study we used crude fungal extracts as antigens, the newest IGRAs developed for other infections are based on molecularly defined antigens, mostly on mixtures of immunogenic peptides. AIMS: To identify proteins in H. capsulatum that might serve as molecularly defined antigens for an IGRA test. METHODS: We surveyed the literature looking for known H. capsulatum-immunogenic proteins and assayed two of them as antigens in an IGRA test, in a study that involved 80 volunteers. Furthermore, we used several bioinformatics tools to identify specific H. capsulatum proteins and to analyze possible strategies for the design of H. capsulatum-specific immunogenic peptides. RESULTS: Seven H. capsulatum-immunogenic proteins were retrieved from the literature. IGRA tests using either the heat shock protein 60 or the M antigen showed high sensitivities but low specificities, most likely due to the high sequence similarity with the corresponding orthologs in other pathogenic microorganisms. We identified around 2000 H. capsulatum-specific proteins, most of which remain unannotated. Class II T-cell epitope predictions for a small number of these proteins showed a great variability among different alleles, prompting for a "brute force" approach for peptide design. CONCLUSIONS: The H. capsulatum genome encodes a large number of distinctive proteins, which represent a valuable source of potential specific antigens for an IGRA test. Among them, the Cfp4 protein stands out as a very attractive candidate.


Assuntos
Antígenos de Fungos/sangue , Antígenos de Fungos/isolamento & purificação , Histoplasma/imunologia , Testes de Liberação de Interferon-gama , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Humanos , Pessoa de Meia-Idade , Adulto Jovem
19.
Cell Microbiol ; 21(10): e13066, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173452

RESUMO

Free-living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose-binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose-binding proteins, Ac-fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.


Assuntos
Acanthamoeba castellanii/metabolismo , Fungos/patogenicidade , Lectina de Ligação a Manose/metabolismo , Acanthamoeba castellanii/química , Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/ultraestrutura , Animais , Candida albicans/patogenicidade , Candida albicans/ultraestrutura , Concanavalina A/metabolismo , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/ultraestrutura , Histoplasma/patogenicidade , Histoplasma/ultraestrutura , Interações Hospedeiro-Patógeno , Larva/microbiologia , Lepidópteros/microbiologia , Manose/química , Manose/metabolismo , Lectina de Ligação a Manose/química , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Paracoccidioides/patogenicidade , Paracoccidioides/ultraestrutura , Saccharomyces cerevisiae/patogenicidade , Saccharomyces cerevisiae/ultraestrutura , Fatores de Tempo , Imagem com Lapso de Tempo , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...