Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37878837

RESUMO

Hydrogels have attracted widespread attention in anticounterfeiting due to their unique physical/chemical properties and designability. However, hydrogels' poor mechanical properties and sluggish response to chemical stimuli pose challenges for their wide application. A fluorescent tough organohydrogel capable of freeform writing of information is reported in this work. By incorporation of the fluorescent monomer 7-methylacryloxy-4-methylcoumarin into the polyacrylamide network in a covalently cross-linked manner while intertwining with the carboxymethyl cellulose sodium network, a fluorescent tough organohydrogel with a dual-network structure is prepared. The organohydrogel shows acid-base-mediated adjustable fluorescence through the transformation of fluorescent monomers. Ion printing and electrical stimulation design achieved free information storage and encryption. In addition, the prepared organohydrogel has good antifreezing properties and can be encrypted and decrypted at subzero temperatures. The encrypted information in the organohydrogel can be read only after UV-light irradiation. These patterned fluorescent organohydrogels should find applications in protected message displays for improved information security.

2.
J Colloid Interface Sci ; 616: 268-278, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219192

RESUMO

In order to overcome the structural drawbacks of layered electrodes in flexible supercapacitors, the construction of an electrode frame with high adaptability for the loading of different active materials makes the production of flexible supercapacitors simpler and more accurate. Herein, a novel loader type flexible supercapacitor with three-dimensional hybrid structure is built. In our design, the acetylene black and active material are enriched in the polyvinyl alcohol matrix, and the three-dimensional conductive network that can load different active material is formed. The active material can be selected on demand. The basic electrode (also a loader) formed by polyvinyl alcohol and acetylene black is an electronic conductor (∼1 Scm-1) with good electrochemical and mechanical performance. By loading active materials in this basic electrode, more powerful flexible electrodes can be built easily and accurately with the same steps according to the designed proportion. Electrodes constructed according to this method deliver nonnegligible surface capacity (e.g. 1.1 Fcm-2 in surface capacitance, polyaniline/carbon nanotube composite as active materials) with good response, rate performance, excellent durability (10000 times of charge-discharge), and good foldability (1000 times of folding). This pattern of carrier type electrodes provides a simple and universal strategy for manufacturing flexible supercapacitors.

3.
J Colloid Interface Sci ; 590: 591-600, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581662

RESUMO

This paper rationally designs the morphology and phase structure of carbon nanotube/polyaniline@MoS2 (CNT/PANI@MoS2) composites, with MoS2 conductive wrapping growing vertically on the outer layer of the composites via hydrothermal method. The crystalline nature and chemical properties are characterized by X-ray diffraction (XRD), Flourier transformation infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS). Morphology and microstructures are determined by Scanning electric microscopy (SEM), Transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET). The developed composites possess excellent electrochemical properties (the specific capacitance is substantially increased by ~119%, reaching 700.0 F g-1 after wrapping by MoS2) and good cycling stability (after over 5000 cycles retains 80.8% capacitance) in three-electrode systems, which indicating that the unique morphology of MoS2 shells endow the channels to composites for rapid charge transport and ionic diffusion. Furthermore, symmetric supercapacitors devices assembled with the CNT/PANI@MoS2 composites achieve specific capacitance of 459.7 F g-1 at 1 A g-1, capacitance retention is 97.4% after 10,000 cycles and reach superior energy density of 40.9 Wh kg-1 at the power density of 400 W kg-1. This strategy of three-dimensional wrapping method may open up a new potential to relieve the dilemma of degraded performance of supercapacitor, while improving the capacitance and stability for supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...