Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
Nat Nanotechnol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300226

RESUMO

Efficient cytosolic delivery is a significant hurdle when using short interfering RNA (siRNA) in therapeutic applications. Here we show that cholesterol-rich exosomes are prone to entering cancer cells through membrane fusion, achieving direct cytosolic delivery of siRNA. Molecular dynamics simulations suggest that deformation and increased contact with the target cell membrane facilitate membrane fusion. In vitro we show that cholesterol-enriched milk-derived exosomes (MEs) achieve a significantly higher gene silencing effect of siRNA, inducing superior cancer cell apoptosis compared with the native and cholesterol-depleted MEs, as well as conventional transfection agents. When administered orally or intravenously to mice bearing orthotopic or subcutaneous tumours, the cholesterol-enriched MEs/siRNA exhibit antitumour activity superior to that of lipid nanoparticles. Collectively, by modulating the cholesterol content of exosome membranes to facilitate cell entry via membrane fusion, we provide a promising approach for siRNA-based gene therapy, paving the way for effective, safe and simple gene therapy strategies.

2.
Quant Imaging Med Surg ; 14(8): 6002-6014, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39144016

RESUMO

Background: Both intracranial atherosclerosis and white matter hyperintensity (WMH) are prevalent among the stroke population. However, the relationship between intracranial atherosclerosis and WMH has not been fully elucidated. Therefore, the aim of this study was to investigate the relationship between the characteristics of intracranial atherosclerotic plaques and the severity of WMH in patients with ischemic stroke using high-resolution magnetic resonance vessel wall imaging. Methods: Patients hospitalized with ischemic stroke and concurrent intracranial atherosclerosis at Beijing Tsinghua Changgung Hospital, a tertiary comprehensive stroke center, who underwent high-resolution magnetic resonance vessel wall imaging and conventional brain magnetic resonance imaging were continuously recruited from January 2018 to December 2018. Both intracranial plaque characteristics (plaque number, maximum wall thickness, luminal stenosis, T1 hyperintensity, and plaque length) and WMH severity (Fazekas score and volume) were evaluated. Spearman correlation or point-biserial correlation analysis was used to determine the association between clinical characteristics and WMH volume. The independent association between intracranial plaque characteristics and the severity as well as WMH score was analyzed using logistic regression. The associations of intracranial plaque characteristics with total white matter hyperintensity (TWMH) volume, periventricular white matter hyperintensity (PWMH) volume and deep white matter hyperintensity (DWMH) volume were determined using multilevel mixed-effects linear regression. Results: A total of 159 subjects (mean age: 64.0±12.5 years; 103 males) were included into analysis. Spearman correlation analysis indicated that age was associated with TWMH volume (r=0.529, P<0.001), PWMH volume (r=0.523, P<0.001) and DWMH volume (r=0.515, P<0.001). Point-biserial correlation analysis indicated that smoking (r=-0.183, P=0.021) and hypertension (r=0.159, P=0.045) were associated with DWMH volume. After adjusting for confounding factors, logistic regression analysis showed plaque number was significantly associated with the presence of severe WMH [odds ratio (OR), 1.590; 95% CI, 1.241-2.035, P<0.001], PWMH score of 3 (OR, 1.726; 95% CI, 1.074-2.775, P=0.024), and DWMH score of 2 (OR, 1.561; 95% CI, 1.150-2.118, P=0.004). Intracranial artery luminal stenosis was associated with presence of severe WMH (OR, 1.032; 95% CI, 1.002-1.064, P=0.039) and PWMH score of 2 (OR, 1.057; 95% CI, 1.008-1.109, P=0.023). Multilevel mixed-effects linear regression analysis showed that plaque number was associated with DWMH volume (ß=0.128; 95% CI, 0.016-0.240; P=0.026) after adjusted for age and sex. Conclusions: In ischemic stroke patients, intracranial atherosclerotic plaque characteristics as measured by plaque number and luminal stenosis were associated with WMH burden.

3.
Chem Sci ; 15(34): 13753-13759, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39211495

RESUMO

Metals containing d-orbitals are typically characterized by strong deformation and polarization, yet they tend to induce narrow bandgaps that render them little-appreciated by high-power nonlinear optical (NLO) crystals. Incorporating highly electropositive polycations into d-orbital-containing chalcogenides to modify them into salt-inclusion chalcogenides (SICs) that are competitive in NLO materials, is a viable solution to this predicament. In the present work, two isostructural SICs [K4Cl][MGa9S16] (M = Mn, 1; Hg, 2) are successfully synthesized by the high-temperature molten-salt growth method. Both compounds demonstrate commendable second-harmonic-generation (SHG) responses (0.6-1.0 × AgGaS2 @1910 nm), which can be attributed to their well-designed [MGa9S16]3- anionic frameworks; and compound 2 exhibits the widest optical bandgap (3.41 eV) among the Hg-based NLO chalcogenides. Also, an interesting dual-band photoluminescence emission centered at ∼650 and ∼718 nm is detected in 1 at 77 K, with long lifetimes of 0.94 and 1.35 ms, respectively.

4.
ChemSusChem ; : e202401401, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183184

RESUMO

Dendrite growth of lithium (Li) metal anodes is considered as one of the most tough issues for Li metal batteries with a theoretically high energy density. This is attributed to the rapid exhaustion of Li ions at the electrode/electrolyte interface, which is even worse at low temperatures with poor diffusion kinetics of Li ions. Here, pulse charge with intermittent rest time during battery charging is proposed to handle the dendrite growth issue of Li metal anodes at low temperatures. The depleted Li ions near the interfaces can be rapidly replenished during the rest time, thus effectively suppressing the dendrites growth. Further investigations indicate that the large dendrites can be suppressed at the Li ion nucleation stage. The equivalent lifespan considering the rest time is proposed. At -10oC, the lifespan of Li||Li batteries cycled under 3 mA cm-2 and 1 mAh cm-2 is increased from 24 h to equivalent 64 h. Li ||LiNi0.5Co0.2Mn0.3O2 batteries with 80% capacity retention can be stably operated from 39 cycles to 56 cycles. This design presents an efficient and convenient strategy to regulate the deposition behaviors of Li metal anodes with a dendrite-free morphology.

5.
Plant Physiol Biochem ; 214: 108966, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059274

RESUMO

Global warming significantly threatens crop production, and adversely affects plant physiology due to rising temperatures. Oriental hybrid lily, an ornamental plant of economic importance, experiences flower color changes in response to elevated temperatures. Anthocyanins belong to a subgroup of flavonoids and are the primary pigments responsible for the coloration of oriental hybrid lily petals. However, the regulatory mechanisms governing flavonoid biosynthesis under high temperature conditions in lilies remain poorly understood. In this study, we revealed the altered metabolite profiles in flavonoid biosynthesis using quasi-targeted metabolomic and transcriptomic analyses. Isoflavonoids accumulate substantially under high temperature conditions, whereas the accumulation of anthocyanin decreases. The expression of the isoflavone reductase gene (LhIFR) and the transcription factor LhMYBC2 were upregulated in response to high temperatures. The LhMYBC2 protein, which belongs to Subgroup 4-AtMYB4, competes with the anthocyanin positive regulator LhMYBA1 for the LhTT8 partner, thereby repressing the formation of a positively regulated transcription complex. Heterologous overexpression of LhMYBC2 in tobacco led to reduced anthocyanin accumulation and increased isoflavonoid accumulation, corroborating its role in inhibiting anthocyanin biosynthesis. This study proposes a regulatory model wherein LhMYBC2 acts as a mediator of flavonoid biosynthesis, influencing the coloration of lily flowers under high-temperature stress. These findings deepen our understanding of the metabolic and transcriptional responses of lily to heat stress and underscore the potential role of LhMYBC2 in mitigating anthocyanin accumulation.


Assuntos
Flavonoides , Regulação da Expressão Gênica de Plantas , Lilium , Proteínas de Plantas , Flavonoides/biossíntese , Flavonoides/metabolismo , Lilium/genética , Lilium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Alta , Antocianinas/biossíntese , Antocianinas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas
6.
Acta Pharmacol Sin ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043970

RESUMO

Z-discs are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-disc-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-disc proteome in vivo. We found palmdelphin (PALMD) as a novel Z-disc-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific Palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed the transverse tubule (T-tubule)-sarcoplasmic reticulum (SR) ultrastructures, which formed the Z-disc-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with the reduction of nexilin (NEXN), a crucial Z-disc-associated protein that is essential for both Z-disc and JMC structures and functions. PALMD interacted with NEXN and enhanced its protein stability while the Nexn mRNA level was not affected. AAV-based NEXN addback rescued the exacerbated cardiac injury in isoproterenol-treated PALMD-depleted mice. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis.

7.
J Ethnopharmacol ; 335: 118609, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39053707

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xiebai San (XBS), a classic Chinese prescription, has been used for the clinical treatment of pneumonia-related diseases for thousands of years. However, the anti-pneumonia pharmacodynamic material basis of XBS and its underlying mechanisms remain unclear. AIM OF THE STUDY: This study aimed to comprehensively investigate and verify the anti-pneumonia pharmacodynamic material basis and mechanisms of XBS. MATERIALS AND METHODS: This study explored the anti-pneumonia activity and key pneumonia targets of XBS in lipopolysaccharide (LPS)-induced zebrafish and RAW264.7 cells in vivo and in vitro through transcriptomics, western blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The chemical fingerprint of XBS was established using high-performance liquid chromatography, and the similarities and areas of characteristic peaks of 15 batches of XBS were analyzed. Based on the spectrum-efficacy relationship, the potential anti-inflammatory components were screened according to their peak areas and efficacy using principal component analysis (PCA), bivariate correlation, and partial least squares regression analysis. Active components that bind to core targets were further screened based on surface plasmon resonance (SPR). The binding mode of proteins and components was simulated via molecular docking, which enabled the identification of the primary active components of XBS, thereby elucidating its anti-pneumonia properties. Finally, the anti-inflammatory activities of these components were verified in vitro. RESULTS: XBS decreased neutrophil aggregation in zebrafish and nitric oxide (NO) secretion in RAW264.7 cells as well as suppressed the release of downstream inflammatory cytokines such as iNOS, TNF-α, IL-1ß, IL-18, and CXCL10 related to TNF and JAK-STAT signaling pathways. The phosphorylation of IκBα, Akt, and Stat3 was alleviated after XBS in cells. The fingerprint similarities of 15 batches of XBS ranged from 0.381 to 0.994, with a large difference. A total of 15 characteristic peaks were identified, and the relative standard deviation of their peak areas ranged from 24.1% to 70.7%. The results of in vitro anti-inflammatory activities of 15 batches of XBS showed that all samples inhibited the expression levels of NO and nine inflammatory markers. The anti-inflammatory index of 15 batches of XBS was determined to be 0.69-0.96 based on transformation of the anti-inflammatory rate and composite index method via PCA. The spectrum-efficacy relationship model of 15 characteristic peak areas and the anti-inflammatory index showed that 7 main potential active components were related to the anti-inflammatory activity of XBS. Moreover, four components (mulberroside A, isoquercitrin, liquiritigenin, and glycyrrhizic acid) screened based on SPR had different affinities toward TNFR1, Akt1, and Stat3 proteins, and the binding modes were elucidated via molecular docking. Finally, in LPS-induced RAW264.7 cells, all four active components (at a concentration of 60 µM) significantly inhibited the expression levels of NO and inflammatory markers. CONCLUSIONS: Based on the comprehensive strategy of spectrum-efficacy relationship and SPR, mulberroside A, isoquercitrin, liquiritigenin, and glycyrrhizic acid were identified as the primary pharmacodynamic active components involved in the anti-pneumonia activity of XBS and were found to intervene in TNF and JAK-STAT signaling pathways.


Assuntos
Anti-Inflamatórios , Medicamentos de Ervas Chinesas , Pneumonia , Ressonância de Plasmônio de Superfície , Peixe-Zebra , Animais , Células RAW 264.7 , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Anti-Inflamatórios/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Simulação de Acoplamento Molecular , Lipopolissacarídeos , Óxido Nítrico/metabolismo
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 569-576, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38932544

RESUMO

Tumor treatment fields (TTFields) can effectively inhibit the proliferation of tumor cells, but its mechanism remains exclusive. The destruction of cellular microtubule structure caused by TTFields through electric field force is considered to be the main reason for inhibiting tumor cell proliferation. However, the validity of this hypothesis still lacks exploration at the mesoscopic level. Therefore, in this study, we built force models for tubulins subjected to TTFields, based on the physical and electrical properties of tubulin molecules. We theoretically analyzed and simulated the dynamic effects of electric field force and torque on tubulin monomer polymerization, as well as the alignment and orientation of α/ß tubulin heterodimer, respectively. Research results indicate that the interference of electric field force induced by TTFields on tubulin monomer is notably weaker than the inherent electrostatic binding force among tubulin monomers. Additionally, the electric field torque generated by the TTFileds on α/ß tubulin dimers is also difficult to affect their random alignment. Therefore, at the mesoscale, our study affirms that TTFields are improbable to destabilize cellular microtubule structures via electric field dynamics effects. These results challenge the traditional view that TTFields destroy the microtubule structure of cells through TTFields electric field force, and proposes a new approach that should pay more attention to the "non-mechanical" effects of TTFields in the study of TTFields mechanism. This study can provide reliable theoretical basis and inspire new research directions for revealing the mesoscopic bioelectrical mechanism of TTFields.


Assuntos
Microtúbulos , Neoplasias , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Humanos , Neoplasias/terapia , Proliferação de Células , Eletricidade Estática , Polimerização , Campos Eletromagnéticos
9.
Technol Health Care ; 32(5): 2941-2949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905065

RESUMO

BACKGROUND: Secondary hyperparathyroidism (SHPT) is one of the common complications of end-stage renal disease-uremia, and is mainly manifested as parathyroid hyperplasia and abnormal secretion of parathyroid hormone (PTH). OBJECTIVE: To investigate the value and advantages of contrast-enhanced ultrasound (CEUS) in evaluating the survival of autografts after parathyroidectomy + parathyroid autotransplantation. METHODS: In this study, 125 patients with renal failure due to polycystic kidney disease, chronic nephritis, diabetic nephropathy, lupus nephritis, and atherosclerotic nephropathy were enrolled as the participants and each of them had 4 secondary hyperactive parathyroid glands and underwent parathyroid autotransplantation. One parathyroid gland was taken from each patient and equally divided into 4 parts and placed in the subcutaneous fat of one forearm for transplantation. CEUS was performed 14 days after the transplantation to observe the micro blood supply of the graft and assess the survival and secretory function of the transplanted parathyroid. The grafts were divided into the partial survival group and the total survival group based on the enhancement characteristics. The survival of the grafts was determined by comparing the parathyroid hormone level in bilateral elbow cephalic veins 1 month after surgery. RESULTS: Among the 125 patients, 112 had linear or punctate enhancement of 2-4 parathyroid glands 14 days after surgery, and 13 patients had linear or punctate enhancement of 0-1 parathyroid gland. There were statistically significant differences in the perfusion pattern, enhancement uniformity, and parathyroid hormone levels in the cephalic veins at the elbow on both the graft and non-graft sides among all groups (P< 0.05). CONCLUSION: Compared to the detection of the difference in the parathyroid hormone level in the cephalic vein of bilateral elbows 1 month after surgery, CEUS can reflect the parathyroid survival after transplantation more quickly and accurately 2 weeks later, and provide a more rapid and agile non-invasive clinical diagnosis method.


Assuntos
Sobrevivência de Enxerto , Hiperparatireoidismo Secundário , Glândulas Paratireoides , Ultrassonografia , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Hiperparatireoidismo Secundário/cirurgia , Hiperparatireoidismo Secundário/diagnóstico por imagem , Adulto , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/cirurgia , Glândulas Paratireoides/transplante , Ultrassonografia/métodos , Meios de Contraste , Hormônio Paratireóideo/sangue , Transplante Autólogo/métodos , Paratireoidectomia/métodos , Idoso , Falência Renal Crônica/cirurgia
10.
Phys Chem Chem Phys ; 26(26): 18266-18275, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38910447

RESUMO

Protein kinase A (PKA) is a ubiquitous cAMP-dependent enzyme in mammalian tissues. The inactive PKA holoenzyme disassociates into a homodimer of regulatory (R) subunits and two active catalytic (C) subunits upon cAMP binding to two tandem domains (termed CBD-A and CBD-B) in R subunits. The release of cAMP facilitates reassociation of R and C subunits, resetting PKA to its basal state. The cAMP-mediated structural changes in the activation-termination cycle remain partially understood. The multimeric states of PKA complicate the issue and are particularly less studied. Therefore, we computationally investigated the conformational dynamics of the PKA RIα homodimer in different cAMP-bound states. The absence of cAMP in two CBDs differently affects the conformational dynamics of protomers. Moreover, such disparate responses are extended to the dimer interface constituted by the N-terminal helical sub-domains termed N3A motifs. The removal of cAMP from CBD-A induces large-scale structural changes of individual R subunits towards the holoenzyme state, consistent with previous simulations of a single R subunit. Meanwhile it keeps the structural heterogeneity of the N3A-N3A' dimer interface observed in the fully bound state. By contrast, the removal of cAMP from CBD-B does not affect individual R subunits but alters the conformational space of the N3A-N3A' dimer interface. The cAMP-coupled structural changes of each protomer and conserved conformational space of the N3A-N3A' dimer interface are essential for the transition between the fully cAMP-bound R2 homodimer and the R2C2 holoenzyme as suggested by their crystal structures. Our work provides structural insights into the regulatory mechanism of cAMP in PKA signaling.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , AMP Cíclico , Multimerização Proteica , AMP Cíclico/metabolismo , AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica
11.
Acta Pharm Sin B ; 14(5): 2006-2025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799624

RESUMO

Diabetes, characterized by hyperglycemia, is a major cause of death and disability worldwide. Peptides, such as insulin and glucagon-like peptide-1 (GLP-1) analogs, have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body. Compared to subcutaneous injection, oral administration of anti-diabetic peptides is a preferred approach. However, biological barriers significantly reduce the efficacy of oral peptide therapeutics. Recent advancements in drug delivery systems and formulation techniques have greatly improved the oral delivery of peptide therapeutics and their efficacy in treating diabetes. This review will highlight (1) the benefits of oral anti-diabetic peptide therapeutics; (2) the biological barriers for oral peptide delivery, including pH and enzyme degradation, intestinal mucosa barrier, and biodistribution barrier; (3) the delivery platforms to overcome these biological barriers. Additionally, the review will discuss the prospects in this field. The information provided in this review will serve as a valuable guide for future developments in oral anti-diabetic peptide therapeutics.

13.
Chem Sci ; 15(18): 6891-6896, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725498

RESUMO

Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 µm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.

14.
RSC Adv ; 14(18): 12883-12887, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38650692

RESUMO

A novel method was developed for synthesizing γ-alkyl ketones via nickel-catalyzed cross-electrophile coupling of cyclopropyl ketones and non-activated primary alkyl chlorides. High reactivity and selectivity can be achieved with sodium iodide as a crucial cocatalyst that generates a low concentration of alkyl iodide via halide exchange, thus avoiding the formation of alkyl dimers. This reaction possessed excellent regioselectivity and high step economy circumventing in situ or pregenerated organometallics.

15.
Small ; 20(35): e2401675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644329

RESUMO

Anodes with high capacity and long lifespan play an important role in the advanced batteries. However, none of the existing anodes can meet these two requirements simultaneously. Lithium (Li)-graphite composite anode presents great potential in balancing these two requirements. Herein, the working mechanism of Li-graphite composite anode is comprehensively investigated. The capacity decay features of the composite anode are different from those of Li ion intercalation in Li ion batteries and Li metal deposition in Li metal batteries. An intercalation and conversion hybrid storage mechanism are proposed by analyzing the capacity decay ratios in the composite anode with different initial specific capacities. The capacity decay models can be divided into four stages including Capacity Retention Stage, Relatively Independent Operation Stage, Intercalation & Conversion Coupling Stage, Pure Li Intercalation Stage. When the specific capacity is between 340 and 450 mAh g-1, its capacity decay ratio is between that of pure intercalation and conversion model. These results intensify the comprehensive understandings on the working principles in Li-graphite composite anode and present novel insights in the design of high-capacity and long-lifespan anode materials for the next-generation batteries.

16.
Nat Commun ; 15(1): 3195, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609380

RESUMO

The solvent-free selective hydrogenation of nitroaromatics to azoxy compounds is highly important, yet challenging. Herein, we report an efficient strategy to construct individually dispersed Co atoms decorated on niobium pentaoxide nanomeshes with unique geometric and electronic properties. The use of this supported Co single atom catalysts in the selective hydrogenation of nitrobenzene to azoxybenzene results in high catalytic activity and selectivity, with 99% selectivity and 99% conversion within 0.5 h. Remarkably, it delivers an exceptionally high turnover frequency of 40377 h-1, which is amongst similar state-of-the-art catalysts. In addition, it demonstrates remarkable recyclability, reaction scalability, and wide substrate scope. Density functional theory calculations reveal that the catalytic activity and selectivity are significantly promoted by the unique electronic properties and strong electronic metal-support interaction in Co1/Nb2O5. The absence of precious metals, toxic solvents, and reagents makes this catalyst more appealing for synthesizing azoxy compounds from nitroaromatics. Our findings suggest the great potential of this strategy to access single atom catalysts with boosted activity and selectivity, thus offering blueprints for the design of nanomaterials for organocatalysis.

17.
PLoS One ; 19(4): e0302292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626181

RESUMO

Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Duplicação Gênica , Filogenia , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Mostardeira/genética , Sinais Direcionadores de Proteínas/genética , Regulação da Expressão Gênica de Plantas
18.
Phytomedicine ; 128: 155397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547623

RESUMO

BACKGROUND: Acute lung injury (ALI) often leads to serious respiratory diseases with high incidence rates and mortality. For centuries, Xiebai San (XBS) has been a classical traditional Chinese medicine (TCM) about respiratory illness such as pneumonia in children. However, the related mechanism of XBS against ALI remains indistinct. PURPOSE: To reveal specific targets of XBS in lipopolysaccharide (LPS)-induced ALI mice using integrated pharmacology. STUDY DESIGN: The integrated method was to expound mechanism and targets of XBS inhibited ALI. METHODS: The primary components in XBS were identified by ultra high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS). The potential drug targets were established using network pharmacology. The anti-ALI effect of XBS was evaluated in mice. Additionally, therapeutic targets were screened by integrating metabolome and transcriptome and verified in lung tissue. RESULTS: In total, 163 chemical components were identified in XBS, and a network of "3 drugs-18 components-86 targets" for XBS against ALI was constructed. In ALI mice, XBS alleviated lung inflammation by decreasing permeation and expression of neutrophils, tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) in bronchoalveolar lavage fluid (BALF), serum, and lung tissue. Next, the transcriptome of lung tissue was analyzed and enriched, indicating the importance of mitogen-activated protein kinase (MAPK), Janus kinase-signal transducer and activator of transcription (JAK-STAT), and others, which was consistent with network pharmacology prediction. Also, western blotting and immunohistochemistry results showed that XBS was against ALI mainly by inhibiting extracellular signal regulated kinase (ERK) and signal transducer and activator of transcription 3 (Stat3) phosphorylation. In addition, the metabolome of lung tissue revealed that XBS mainly regulated pathways involved in arachidonic acid, glycerophospholipid, and tryptophan metabolisms. The expression levels of leukotriene, phosphatidylcholine, kynurenine, and others were also verified. CONCLUSION: XBS alleviated inflammation of ALI by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating arachidonic acid, glycerophospholipid, and tryptophan metabolisms. This study will guide clinical precision medicine and promote modernization of XBS.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Fator de Transcrição STAT3 , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Fator de Transcrição STAT3/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Masculino , Fosforilação/efeitos dos fármacos , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Farmacologia em Rede , Transdução de Sinais/efeitos dos fármacos
19.
Int J Surg ; 110(6): 3285-3293, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498404

RESUMO

PURPOSE: Previous studies have explored the role of immune cells on osteonecrosis. This Mendelian randomization (MR) study further assessed 731 immunocyte phenotypes on osteonecrosis, whether a causal relationship exists, and provides some evidence of causality. METHODS: The 731 immunocyte phenotypes and osteonecrosis data used in this study were obtained from their respective genome-wide association studies (GWAS). The authors used inverse variable weighting (IVW) as the primary analysis method. In addition, the authors simultaneously employed multiple analytical methods, including MR-Egger, weighted mode, simple mode, and weighted median, to strengthen the final results. Finally, sensitivity analyses were conducted to verify the stability and feasibility of the data. RESULTS: The results of the IVW method of MR analysis showed that 8 immunocyte phenotypes were positively associated with osteonecrosis [ P <0.05, odds ratio (OR) > 1]; 18 immunocyte phenotypes were negatively associated with osteonecrosis ( P <0.05, OR<1), none of which were heterogeneous or horizontally pleiotropic ( P > 0.05) or reverse causality. In addition to this, in reverse MR, osteonecrosis was positively associated with 10 additional immunocyte phenotypes ( P <0.05, OR > 1) and negatively associated with 14 immunocyte phenotypes ( P <0.05, OR<1). And none of them had heterogeneity and horizontal pleiotropy ( P > 0.05) or reverse causality. CONCLUSIONS: The authors demonstrated a complex causal relationship between multiple immune phenotypes and osteonecrosis through a comprehensive two-way, two-sample MR analysis, highlighting the complex pattern of interactions between the immune system and osteonecrosis.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteonecrose , Fenótipo , Humanos , Osteonecrose/genética , Osteonecrose/imunologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
20.
Fitoterapia ; 175: 105915, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508499

RESUMO

Four undescribed ginkgolides, including two rare sesquiterpene ginkgolides (compounds 1 and 2) and two diterpenoid ginkgolides (compounds 3 and 4), were isolated from Ginkgo biloba L. The structures of these four ginkgolides were identified based on extensive spectroscopic analysis, DP4+ probability analysis and X-ray diffraction. Compounds 1 and 2 exhibited excellent antiplatelet aggregation activities with IC50 values of 1.20 ± 0.25 and 4.11 ± 0.34 µM, respectively.


Assuntos
Ginkgo biloba , Ginkgolídeos , Compostos Fitoquímicos , Inibidores da Agregação Plaquetária , Ginkgo biloba/química , Estrutura Molecular , Ginkgolídeos/farmacologia , Ginkgolídeos/isolamento & purificação , Ginkgolídeos/química , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Animais , Agregação Plaquetária/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...