Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 402: 130771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701981

RESUMO

A full-scale high-rate cascade anaerobic digestion (CAD) system was evaluated for its ability to enhance enzymatic sludge hydrolysis. The system included a newly built digester, innovatively divided into three pie-shaped compartments (500 m3 each), followed by an existing, larger digester (1500 m3). The system treated a mixture of waste activated sludge and primary sludge, achieving a stable total chemical oxygen demand reduction efficiency (56.1 ± 6.8 %), and enhanced sludge hydrolytic enzyme activities at a 14.5-day total solids retention time (SRT). High-throughput sequencing data revealed a consistent microbial community across reactors, dominated by consortia that govern hydrolysis and acidogenesis. Despite relatively short SRTs in the initial reactors of the CAD system, acetoclastic methanogens belonging to Methanosaeta became the most abundant archaea. ‬‬‬‬‬‬‬‬‬‬‬‬‬ This study proves that the CAD system achieves stable sludge reduction, accelerates enzymatic hydrolysis at full-scale, and paves the way for its industrialization in municipal waste sewage sludge treatment.


Assuntos
Reatores Biológicos , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Hidrólise , Análise da Demanda Biológica de Oxigênio , Anaerobiose , Archaea/metabolismo , Archaea/genética
2.
Water Res ; 243: 120331, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454462

RESUMO

Sulfur-driven autotrophic denitrification (SdAD) is a biological process that can remove nitrate from low carbon/nitrogen (C/N) ratio wastewater. Although this process has been intensively researched, the mechanism whereby its intermediates (i.e., elemental sulfur and nitrite ions) are generated and accumulated remains elusive. Existing mathematical models developed for SdAD cannot accurately predict the intermediates in SdAD because of the incomplete knowledge of process kinetic resulting from changes in the environmental conditions and electron competition during SdAD. To address this limitation, we proposed a novel serial hybrid model structure based on a physics-informed neural network (PINN) to capture the dynamics of the process kinetics and predict the substrate concentrations in SdAD. In this study, we evaluated the model through numerical experiments and applied it to real case studies involving batch and continuous-flow reactor scenarios. By leveraging the PINN approach, the hybrid model yielded accurate predictions at both the state (i.e. substrate concentration) and kinetic levels in the numerical experiments and performed better than both mechanistic and purely data-driven models in the case studies. Furthermore, we used the trained hybrid model to design control strategies for SdAD and a novel integrated process involving SdAD and anammox for energy-efficient nitrogen removal. Finally, we discuss the advantages and application scope of the PINN-based hybrid model.


Assuntos
Reatores Biológicos , Desnitrificação , Cinética , Enxofre , Nitratos , Processos Autotróficos , Nitrogênio , Física
3.
Water Res ; 202: 117398, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252865

RESUMO

Hydrolysis is considered to be the rate-limiting step in anaerobic digestion of waste activated sludge (WAS). In this study, an innovative 4 stages cascade anaerobic digestion system was researched to (1) comprehensively clarify whether cascading configuration enhances WAS hydrolysis, and to (2) better understand the governing hydrolysis kinetics in this system. The cascade system consisted of three 2.2 L ultra-short solids retention times (SRT) continuous stirred tank reactors (CSTRs) and one 15.4 L CSTR. The cascade system was compared with a reference conventional CSTR digester (22 L) in terms of process performance, hydrolytic enzyme activities and microbial community dynamics under mesophilic conditions (35 °C). The results showed that the cascade system achieved a high and stable total chemical oxygen demand (tCOD) reduction efficiency of 40-42%, even at 12 days total SRT that corresponded to only 1.2 days SRT each in the first three reactors of the cascade. The reference-CSTR converted only 31% tCOD into biogas and suffered process deterioration at the applied low SRTs. Calculated specific hydrolysis rates in the first reactors of the cascade system were significantly higher compared to the reference-CSTR, especially at the lowest applied SRTs. The activities of several hydrolytic enzymes produced in the different stages revealed that protease, cellulase, amino peptidases, and most of the tested glycosyl-hydrolases had significantly higher activities in the first three small digesters of the cascade system, compared to the reference-CSTR. This increase in hydrolytic enzyme production by far exceeded the increase in specific hydrolysis rate, indicating that hydrolysis was limited by solids-surface availability for enzymatic attack. Correspondingly, high relative abundances of hydrolytic-fermentative bacteria and hydrogenotrophic methanogens as well as the presence of syntrophic bacteria were found in the first three digesters of the cascade system. However, in the fourth reactor, acetoclastic methanogens dominated, similarly as in the reference-CSTR. Overall, the results concluded that using multiple CSTRs that are operated at low SRTs in a cascade mode of operation significantly improved the enzymatic hydrolysis rate and extend in anaerobic WAS digestion. Moreover, the governing hydrolysis kinetics in the cascading reactors were far more complex than the generally assumed simplified first-order kinetics.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Hidrólise , Cinética , Metano
4.
Water Res ; 181: 115924, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32492593

RESUMO

Aerobic granular sludge (AGS) technology is an alternative to conventional activated sludge to reduce the process footprint and energy consumption. Strategies for the efficient management of its produced biomass, that is grown in a granular morphology as well, need further development. Anaerobic digestion (AD) is commonly applied in waste activated sludge (WAS) treatment and is a potential option also for produced AGS treatment. In earlier studies, the biochemical methane potential of AGS was found lower than that of WAS both grown in full-scale municipal wastewater treatment systems. In order to understand this difference, this study aimed to investigate the anaerobic conversion of structural extracellular polymeric substances (SEPS), which is a type of gel-forming biopolymer, being responsible for the aggregation of sludge. Using WAS and AGS as substrates, a comparative AD batch experiment was performed for 44 days during which the SEPS fraction was extracted from both types of sludge. The changes in the SEPS chemical composition was analysed by Fourier transformed infrared spectroscopy and three-dimensional excitation and emission matrix analysis. In addition, the mechanical strength of hydrogels of extracted polymers cross-linked with Ca2+ ions was investigated by dynamic mechanical analysis. Results showed that the amount of SEPS was reduced by 26% in AGS (SEPSAGS) and by 41% in WAS (SEPSWAS), respectively. Polysaccharides and, to a lesser extent, the proteins in the SEPSAGS were more refractory compared to those in SEPSWAS. This resulted in a lower loss of the gel stiffness of SEPSAGS than that of SEPSWAS during the AD process. Moreover, the release of SEPS from tightly bound EPS to loosely bound EPS were observed in both types of sludge, but that in AGS exhibited a lower transition rate. The observed properties explain the distinct differences in anaerobic biodegradability, the slower decomposition of the sludge structure, as well as the better dewaterability of AGS as compared to WAS after the AD process.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Biopolímeros , Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias
5.
Water Res ; 173: 115617, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070832

RESUMO

Full-scale aerobic granular sludge technology under the trade name Nereda® has been implemented for municipal, as well as industrial wastewater treatment. Owing to the operational reactor procedures, two types of waste aerobic granular sludge can be clearly distinguished: 1) aerobic granular sludge selection discharge (AGS-SD) and 2) aerobic granular sludge mixture (AGS-RTC). This study systematically compared the anaerobic biodegradability of AGS-SD and AGS-RTC under mesophilic conditions. Results were further compared with the anaerobic conversion of waste activated sludge (WAS) as well as primary sludge (PS) from full-scale municipal wastewater treatment plants. Analysis showed similar chemical characteristics for AGS-SD and PS, which were both characterized by a high carbohydrate content (429 ± 21 and 464 ± 15 mg glucose/g VS sludge, respectively), mainly cellulosic fibres. Concurrently, AGS-RTC exhibited chemical properties close to WAS, both characterized by a relatively high protein content, which were individually 498 ± 14 and 389 ± 15 mg/g VS sludge. AGS-SD was characterized by a high biochemical methane potential (BMP) (296 ± 15 mL CH4/g VS substrate), which was similar to that of PS, and remarkably higher than that of AGS-RTC and WAS. Strikingly, the BMP of AGS-RTC (194 ± 10 mL CH4/g VS substrate) was significantly lower than that of WAS (232 ± 11 mL CH4/g VS substrate). Mechanically destroying the compact structure of AGS-RTC only accelerated the methane production rate but did not significantly affect the BMP value. Results indicated that compared to WAS, the proteins and carbohydrates in AGS-RTC were both more resistant to anaerobic bio-degradation, which might be related to the presence of refractory microbial metabolic products in AGS-RTC.


Assuntos
Esgotos , Águas Residuárias , Aerobiose , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
6.
J Environ Sci (China) ; 87: 93-111, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791521

RESUMO

In recent years, volatile fatty acid (VFA) production through anaerobic fermentation of sewage sludge, instead of methane production, has been regarded as a high-value and promising roadmap for sludge stabilization and resource recovery. This review first presents the effects of some essential factors that influence VFA production and composition. In the second part, we present an extensive analysis of conventional pretreatment and co-fermentation strategies ultimately addressed to improving VFA production and composition. Also, the effectiveness of these approaches is summarized in terms of sludge degradation, hydrolysis rate, and VFA production and composition. According to published studies, it is concluded that some pretreatments such as alkaline and thermal pretreatment are the most effective ways to enhance VFA production from sewage sludge. The possible reasons for the improvement of VFA production by different methods are also discussed. Finally, this review also highlights several current technical challenges and opportunities in VFA production with spectrum control, and further related research is proposed.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Hidrólise , Metano , Esgotos
7.
Membranes (Basel) ; 7(2)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333092

RESUMO

In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl3 was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...