Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 58(2): 665-81, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25470070

RESUMO

We recently reported on a controlled deactivation/detoxification approach for obtaining cannabinoids with improved druggability. Our design incorporates a metabolically labile ester group at strategic positions within the THC structure. We have now synthesized a series of (-)-Δ(8)-THC analogues encompassing a carboxyester group within the 3-alkyl chain in an effort to explore this novel cannabinergic chemotype for CB receptor binding affinity, in vitro and in vivo potency and efficacy, as well as controlled deactivation by plasma esterases. We have also probed the chain's polar characteristics with regard to fast onset and short duration of action. Our lead molecule, namely 2-[(6aR,10aR)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-3-yl]-2-methyl-propanoic acid 3-cyano-propyl ester (AM7438), showed picomolar affinity for CB receptors and is deactivated by plasma esterases while the respective acid metabolite is inactive. In further in vitro and in vivo experiments, the compound was found to be a remarkably potent and efficacious CB1 receptor agonist with relatively fast onset/offset of action.


Assuntos
Dronabinol/análogos & derivados , Dronabinol/metabolismo , Desenho de Fármacos , Células HEK293 , Humanos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
2.
ACS Med Chem Lett ; 5(4): 400-4, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900848

RESUMO

As a part of our controlled-deactivation ligand development project, we recently disclosed a series of (-)-Δ(8)-tetrahydrocannabinols (THCs) with a metabolically labile ester group at the 2'-position of the side chain. Now, we have replaced the C-ring in the classical THC structure with a hydrolyzable seven-membered lactone. One of the synthesized analogues binds with high affinity to the CB1 receptor (K i = 4.6 nM) and exhibits much lower affinities for the mCB2 and the hCB2. Also, in vitro functional characterization found the compound to be an agonist at rCB1. Consistent with our rational design, the lead cannabinergic lactone identified here is susceptible to metabolic inactivation by plasma esterases, while the respective acid metabolite is inactive at CB receptors. These results are highlighted with molecular modeling of the two regiosomeric lactones.

3.
J Med Chem ; 56(24): 10142-57, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24286207

RESUMO

We report an approach for obtaining novel cannabinoid analogues with controllable deactivation and improved druggability. Our design involves the incorporation of a metabolically labile ester group at the 2'-position on a series of (-)-Δ(8)-THC analogues. We have sought to introduce benzylic substituents α to the ester group which affect the half-lives of deactivation through enzymatic activity while enhancing the affinities and efficacies of individual ligands for the CB1 and CB2 receptors. The 1'-(S)-methyl, 1'-gem-dimethyl, and 1'-cyclobutyl analogues exhibit remarkably high affinities for both CB receptors. The novel ligands are susceptible to enzymatic hydrolysis by plasma esterases in a controllable manner, while their metabolites are inactive at the CB receptors. In further in vitro and in vivo experiments key analogues were shown to be potent CB1 receptor agonists and to exhibit CB1-mediated hypothermic and analgesic effects.


Assuntos
Canabinoides/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Animais , Canabinoides/síntese química , Canabinoides/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
4.
Artigo em Inglês | MEDLINE | ID: mdl-24533425

RESUMO

Fatty acid amide hydrolase (FAAH), the enzyme involved in the inactivation of the endocannabinoid anandamide (AEA), is being considered as a therapeutic target for analgesia and neuroprotection. We have developed a brain permeable FAAH inhibitor, AM5206, which has served as a valuable pharmacological tool to explore neuroprotective effects of this class of compounds. In the present work, we characterized the interactions of AM5206 with a representative AEA carrier protein, human serum albumin (HSA), using 19F nuclear magnetic resonance (NMR) spectroscopy. Our data showed that as a drug carrier, albumin can significantly enhance the solubility of AM5206 in aqueous environment. Through a series of titration and competitive binding experiments, we also identified that AM5206 primarily binds to two distinct sites within HSA. Our results may provide insight into the mechanism of HSA-AM5206 interactions. The findings should also help in the development of suitable formulations of the lipophilic AM5206 and its congeners for their effective delivery to specific target sites in the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...