Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470724

RESUMO

The mesophase pitch-based carbon fiber interface material (TIM) with a vertical array was prepared by using mesophase pitch-based short-cut fibers (MPCFs) and 3016 epoxy resin as raw materials and carbon nanotubes (CNTs) as additives through electrostatic flocking and resin pouring molding process. The microstructure and thermal properties of the interface were analyzed by using a scanning electron microscope (SEM), laser thermal conductivity and thermal infrared imaging methods. The results indicate that the plate spacing and fusing voltage have a significant impact on the orientation of the arrays formed by mesophase pitch-based carbon fibers. While the orientation of the carbon fiber array has a minimal impact on the shore hardness of TIM, it does have a direct influence on its thermal conductivity. At a flocking voltage of 20 kV and plate spacing of 12 cm, the interface material exhibited an optimal thermal conductivity of 24.47 W/(m·K), shore hardness of 42 A and carbon fiber filling rate of 6.30 wt%. By incorporating 2% carbon nanotubes (CNTs) into the epoxy matrix, the interface material achieves a thermal conductivity of 28.97 W/(m·K) at a flocking voltage of 30 kV and plate spacing of 10 cm. This represents a 52.1% increase in thermal conductivity compared to the material without TIM. The material achieves temperature uniformity within 10 s at the same heat source temperatures, which indicates a good application prospect in IC packaging and electronic heat dissipation.

2.
Materials (Basel) ; 17(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473456

RESUMO

Carbon-based composite materials, denoted as C/C composites and possessing high thermal conductivity, were synthesized utilizing a three-dimensional (3D) preform methodology. This involved the orthogonal weaving of mesophase pitch-based fibers in an X (Y) direction derived from low-temperature carbonization, and commercial PAN-based carbon fibers in a Z direction. The 3D preforms were saturated with mesophase pitch in their raw state through a hot-pressing process, which was executed under relatively low pressure at a predetermined temperature. Further densification was achieved by successive stages of mesophase pitch impregnation (MPI), followed by impregnation with coal pitch under high pressure (IPI). The microstructure and thermal conductivity of the C/C composites were systematically examined using a suite of analytical techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and PLM, amongst others. The findings suggest that the volumetric fraction of fibers and the directional alignment of the mesophase pitch molecules can be enhanced via hot pressing. The high graphitization degree of the mesophase pitch matrix results in an increased microcrystalline size and thus improved thermal conductivity of the C/C composite. Conversely, the orientation of the medium-temperature coal pitch matrix is relatively low, which compensates for the structural inadequacies of the composite material, albeit contributing minimally to the thermal conductivity of the resultant C/C composites. Following several stages of impregnation with mesophase pitch and subsequent impregnation with medium-temperature coal pitch, the 3D C/C composites yielded a density of 1.83 and 2.02 g/cm3. The thermal conductivity in the X (Y) direction was found to be 358 and 400 W/(m·K), respectively.

3.
Talanta ; 271: 125616, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277969

RESUMO

Rapid, sensitive and specific methods are crucial for nucleic acid detection. CRISPR/Cas12b has recently been widely used in nucleic acid detection. However, due to its thermophagic property, DNA isothermal recombinase-aided amplification (RAA) and subsequent CRISPR/Cas12b detection require two separate reactions, which is cumbersome and inconvenient and may cause aerosol pollution. In this study, we propose an RAA-CRISPR/Cas12b one-pot detection assay (Rcod) for Bordetella pertussis detection without additional amplification product transfer steps. The time from sample processing to response time was less than 30 min using nucleic acid extraction-free method, and the sensitivity reached 0.2 copies/µL. In this system, Alicyclobacillus acidoterrestris Cas12b protein (AacCas12b) exhibited strong and specific trans-cleavage activity at a constant temperature of 37 °C, while the cis-cleavage activity was weak. This characteristic reduces the interference of AacCas12b with nucleic acids in the system. Compared with real-time PCR, our Rcod system detected B. pertussis in 221 clinical samples with a sensitivity and specificity of 97.96 % and 99.19 %, respectively, with nucleic acid extraction-free method. The rapid, sensitive and specific Rcod system provides ideas for the establishment of CRISPR-based one-step nucleic acid detection and may aid the development of reliable point-of-care nucleic acid tests. IMPORTANCE: Pertussis is an acute respiratory infection caused by B. pertussis that is highly contagious and potentially fatal, and early diagnosis is essential for the treatment of whooping cough. In this study, we found that AacCas12b has high and strongly specific trans-cleavage activity at lower temperatures. A RAA-CRISPR/Cas12b one-step detection platform (Rcod) without interference with amplification was developed. In addition, the combination of Rcod and nucleic acid extraction-free method can quickly and accurately detect the qualitative detection of B. pertussis, and the detection results are visualized, which makes the pathogen nucleic acid detection and analysis process simpler, and provides a new method for the rapid clinical diagnosis of B. pertussis.


Assuntos
Ácidos Nucleicos , Coqueluche , Humanos , Sistemas CRISPR-Cas , Recombinases/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
4.
Biotechnol J ; 18(11): e2300207, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37551831

RESUMO

Drug-metabolizing enzymes play an important role in the metabolism of drugs in vivo. Their activity is an important factor affecting the rate of drug metabolism, which directly determines the intensity and persistence of drug action. Patients taking medication can be divided into different metabolic types through detection of CYP2C19 drug-metabolizing enzyme gene polymorphisms, which can then be used for medication guidance for clopidogrel. Here, we describe a detection method based on real-time polymerase chain reaction (PCR). This method uses multicolor melting curve analysis to accurately identify different mutation sites and genotypes of CYP2C19 * 2, CYP2C19 * 3, and CYP2C19 * 17. The detection limit of plasmid samples was 1 copies µL-1 ; that of genomic samples was 0.1 ng µL-1 . The system can detect nine types of CYP2C19 * 2/3/17 at three sites in one tube, quickly achieving detection within 1 h. Combined with the sample release agent, sample extraction was completed in 5 s, achieving rapid diagnosis without extraction for timely diagnosis and treatment. Furthermore, the system is not limited to blood samples and can also be applied to oropharyngeal and saliva samples, increasing sampling diversity and convenience. When using clinical blood samples (n = 93), the detection system we established was able to quickly and accurately identify different genotypes, and the accuracy and effectiveness of the detection were confirmed by Sanger sequencing. Due to its accuracy, rapidity, simple operation, and low cost, detection technology based on real-time polymerase amplification combined with melting curve analysis is expected to become a powerful tool for detecting and guiding clopidogrel use in countries with limited resources.


Assuntos
Polimorfismo Genético , Humanos , Clopidogrel , Citocromo P-450 CYP2C19/genética , Genótipo , Reação em Cadeia da Polimerase em Tempo Real
5.
Anal Chim Acta ; 1248: 340938, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813457

RESUMO

CRISPR-Cas12a (Cpf1) is widely used for pathogen detection. However, most Cas12a nucleic acid detection methods are limited by a PAM sequence requirement. Moreover, preamplification and Cas12a cleavage are separate. Here, we developed a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM sequence with high sensitivity and specificity that offers one-tube, rapid, and visually observable detection of nucleic acids. In this system, Cas12a detection and RPA amplification are performed simultaneously, without separate preamplification and product transfer steps, and 0.2 copies/µL of DNA and 0.4 copies/µL of RNA can be detected. In the ORCD system, the activity of Cas12a is the key to the nucleic acid detection; specifically, reducing Cas12a activity increases the sensitivity of ORCD assay detection of the PAM target. Furthermore, by combining this detection technique with a nucleic acid extraction-free method, our ORCD system can be used to extract, amplify and detect samples within 30 min, as verified with tests of 82 Bordetella pertussis clinical samples with a sensitivity and specificity of 97.30% and 100% compared with PCR. We also tested 13 SARS-CoV-2 samples with RT-ORCD, and the results were consistent with RT-PCR.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , RNA , Bioensaio , Técnicas de Amplificação de Ácido Nucleico
6.
Cell Commun Signal ; 20(1): 40, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346238

RESUMO

BACKGROUND: Tumor cells tend to utilize glycolysis rather than aerobic respiration even under aerobic conditions. OVOL2, an inhibitory C2H2 zinc finger transcription factor, is a potential tumor suppressor in cancers. However, the association between OVOL2 and tumor energy metabolism is unknown. METHODS: Western blotting was used to determine the expression of OVOL2 in different non-small cell lung cancer (NSCLC) cell lines and mouse models. The metabolic parameters in NSCLC cells following overexpression or knockdown OVOL2 were examined. To define the mechanism by which OVOL2 regulates aerobic glycolysis, interacting protein of OVOl2 and downstream molecular events were identified by luciferase assay and co-immunoprecipitation. We documented the regulatory mechanism in mouse xenograft models. Finally, clinical relevance of OVOL2, NF-κB signaling and GLUT1 was measured by immunostaining. RESULTS: OVOL2 is downregulated in NSCLC and overexpression of OVOL2 inhibits the survival of cancer cells. Moreover, OVOL2 directly binds to P65 and inhibits the recruitment of P300 but facilitates the binding of HDAC1 to P65, which in turn negatively regulates NF-κB signaling to suppress GLUT1 translocation and glucose import. In contrast, OVOL2 expression is negatively regulated by NF-κB signaling in NSCLC cells via the ubiquitin-proteasome pathway. Re-expression of OVOL2 significantly compromise NF-κB signaling-induced GLUT1 translocation, aerobic glycolysis in NSCLC cells and mouse models. Immunostaining revealed inverse correlations between the OVOL2 and phosphorylated P65 levels and between the OVOL2 and membrane GLUT1 levels, and a strong correlation between the phosphorylated P65 and membrane GLUT1 levels. CONCLUSIONS: These results suggest a regulatory circuit linking NF-κB and OVOL2, which highlights the role of NF-κB signaling and OVOL2 in the modulation of glucose metabolism in NSCLC. Video Abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , NF-kappa B , Fatores de Transcrição , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sobrevivência Celular , Glucose/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo
7.
Sci China Chem ; 65(3): 630-640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126481

RESUMO

Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics (DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection. The RCD platform demonstrated a high level of sensitivity, specificity (no false positives or negatives), speed (≤30 min), automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of qPCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s11426-021-1169-1.

8.
Materials (Basel) ; 13(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325939

RESUMO

In this study, three kinds of round-shaped pitch-based graphite fiber with different microstructural features (crystallinity and carbon layer orientation) were fabricated by melt-spinning, preoxidation, carbonization and graphitization. The morphology, crystalline size and carbon layer orientation of carbon fibers from different pitch precursors and spinning rates were characterized through X-ray diffraction, scanning electron microscopy and transmission electron analyses. The correlation of the electrochemical performance and microstructure of graphite fibers as anode materials for lithium-ion batteries was investigated. The results suggest that large-diameter anisotropic graphite fibers (L-AF3000) with a radial texture of the transverse section are more favorable for lithium intercalation storage. The discharge capacity of L-AF3000 is 319.1 mAh∙g-1 at 0.1 C (current density). Nevertheless, the capacity drops to 209.9 mAh∙g-1 at a high current density of 1 C, and the capacity retention is only 82.2% over 100 cycles at 0.1 C. Small-diameter anisotropic graphite fibers (S-AF3000) with a spiral-shaped wrinkle texture of the transverse section possess discharge capacities of 284.1 mAh∙g-1 at 0.1 C and 260.2 mAh∙g-1 at a high current density of 1 C. Meanwhile, the best capacity retention of the fibers is 101.6% over 100 cycles at 0.1 C. The results suggest that the disordered carbon layers in S-AF3000 can retain the structural integrity of fibers as anode material for lithium-ion batteries and thus obtain excellent cycle stability. In addition, larger crystalline sizes of fibers correspond to higher discharge capacity, and a smaller diameter is beneficial to the fast insertion and extraction of lithium-ion in fibers.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 1): 041917, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21230323

RESUMO

Self-consistent normal mode analysis (SCNMA) is applied to heme c type cytochrome f to study temperature-dependent protein motion. Classical normal mode analysis assumes harmonic behavior and the protein mean-square displacement has a linear dependence on temperature. This is only consistent with low-temperature experimental results. To connect the protein vibrational motions between low and physiological temperatures, we have incorporated a fitted set of anharmonic potentials into SCNMA. In addition, quantum harmonic-oscillator theory has been used to calculate the displacement distribution for individual vibrational modes. We find that the modes involving soft bonds exhibit significant non-Gaussian dynamics at physiological temperature, which suggests that it may be the cause of the non-Gaussian behavior of the protein motions probed by elastic incoherent neutron scattering. The combined theory displays a dynamical transition caused by the softening of few "torsional" modes in the low-frequency regime ( <50 cm(-1) or <6 meV or >0.6 ps). These modes change from Gaussian to a classical distribution upon heating. Our theory provides an alternative way to understand the microscopic origin of the protein dynamical transition.


Assuntos
Citocromos f/metabolismo , Modelos Biológicos , Movimento , Distribuição Normal , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...