Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; : 114350, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848783

RESUMO

Ginsenoside (GS), one of the main active components in ginseng, can enhance insulin sensitivity, improve the function of islet ß cells, and reduce cell apoptosis in the treatment of diabetes. However, the drawbacks of high lipid solubility, poor water solubility, and low oral availability in Ginsenoside Rg3 (G-Rg3) seriously limit further application of GS. In this work, a G-Rg3 PEGylated long-circulating liposome (PEG-L-Rg3) is designed and developed to improve symptoms in type 2 diabetic mice. The as-prepared PEG-L-Rg3 with a spherical structure shows a particle size of ∼ 140.5 ±â€¯1.4 nm, the zeta potential of -0.10 ±â€¯0.05 mV, and a high encapsulation rate of 99.8 %. Notably, in vivo experimental results demonstrate that PEG-L-Rg3 exhibits efficient ability to improve body weight and food intake in streptozotocin-induced type 2 diabetic mice. Moreover, PEG-L-Rg3 also enhances fasting insulin (FINS) and insulin sensitivity index (ISI). In addition, the glucose tolerance of mice is significantly improved after the treatment of PEG-L-Rg3, indicating that PEG-L-Rg3 can be a potential drug for the treatment of type 2 diabetes, which provides a new way for the treatment of type 2 diabetes using ginsenosides.

2.
J Hazard Mater ; 470: 134274, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608587

RESUMO

The sluggish kinetics of Fe2+ regeneration seriously hinders the performance of Fenton process. However, the conventional Fenton system excessively stifle hydrogen-producing reactions, ignoring the significance of active hydrogen (H*) in Fe3+ reduction. Herein, a strategy of H* modulation is developed by decorating molybdenum disulfide (MoS2) on a graphite felt (GF) cathode to boost Fe2+ regeneration in solar-driven electro-Fenton (SEF) process. With MoS2 regulation, moderately dispersed MoS2 on GF can serve as a bifunctional cathode, where the H* and hydrogen peroxide (H2O2) are simultaneously generated through H+ reduction and O2 reduction, respectively. The in-situ generated H2O2 can trigger Fenton reactions with Fe2+, while the H* with robust reducing potential can significantly expedite Fe3+ reduction, consequently enhancing the HO• production. Both DFT calculations and EPR experiments confirm that H* can be activated via MoS2 decoration. The results show that Fe2+ concentration in the MoS2 @GF-SEF system remains at 15.74 mg/L (56.21%) after 6 h, which is 17.89 times that of the GF-SEF system. Moreover, the HO• content and organics degradation rate in the MoS2 @GF-SEF are 3.61 and 5.30 times those of the GF-SEF, respectively. This study provides a practical cathode strategy of H* modulation to enhance HO• production and electro-Fenton process. ENVIRONMENTAL IMPLICATION: Boosting Fe2+ regeneration is of great value for the Electro-Fenton process. Herein, report a strategy to achieve this goal based on a MoS2 @GF cathode. Remarkably, the MoS2 @GF system exhibits exceptional efficiency for both various refractory organic compounds with environmentally hazardous effects and sterilization aspects, which can also work over a wide range of pH values (3-11). Specially, this system is driven only by solar energy. These characteristics make the electro-Fenton system more suitable for practical wastewater treatment.

3.
ACS Omega ; 9(3): 3480-3490, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284085

RESUMO

The endocytosis, intracellular transport, and exocytosis of different-sized nanoparticles were reported to greatly affect their efficacy and biosafety. The quantitation of endocytosis and exocytosis as well as subcellular distribution of nanoparticles might be an effective approach based on transport pathway flux analysis. Thus, the key parameters that could present the effects of three different-sized ultrasmall iron oxide nanoparticles (USIONPs) were systematically investigated in RAW264.7 cells. The endocytosis and exocytosis of USIONPs were related to their sizes; 15.4 nm of S2 could be quickly and more internalized and excreted in comparison to S1 (7.8 nm) and S3 (30.7 nm). In RAW264.7 cells, USIONPs were observed in endosomes, lysosomes, the Golgi apparatus, and autophagosomes via a transmission electron microscope. Based on flux analysis of intracellular transport pathways of USIONPs, it was found that 43% of S1, 40% of S2, and 44% of S3 were individually transported extracellularly through the Golgi apparatus-involved middle-fast pathway, while 24% of S1, 23% of S2, and 26% of S3 were transported through the fast recycling endosomal pathway, and the residues were transported through the slower speed lysosomal pathway. USIONPs might be transported via size-related endocytosis and exocytosis pathways. The pathway flux could be calculated on the basis of disturbance analysis of special transporters as well as their coding genes. Because there were rate differences among these transport pathways, this pathway flux could anticipate the intracellular remaining time and distribution of different-sized nanoparticles, the function exertion, and side effects of nanomaterials. The size of the nanomaterials could be optimized for improving functions and safety.

4.
J Sci Food Agric ; 104(3): 1553-1563, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815100

RESUMO

BACKGROUND: As indigestible carbohydrates, milk oligosaccharides possess various benefits for newborns, mainly through intestinal microbiota, among which 2'-fucosyllactose (2'-FL) is the most predominant milk oligosaccharide. However, knowledge about the fermentative characteristics of 2'-FL in the gut remains limited, especially in the small intestine. The aim of this study is to explore the differential fermentability of 2'-FL by the small and large intestinal microbiota of piglets using fructo-oligosaccharide (FOS) and lactose as controls in an in vitro batch fermentation experiment. During fermentation, microbial composition was characterized along with gas production and short-chain fatty acid production. RESULTS: 2'-Fucosyllactose showed differential fermentability in jejunal and colonic fermentation. Compared with the colon, 2'-FL produced less gas in the jejunum than in the FOS and lactose groups (P < 0.05). Meanwhile, 2'-FL exhibited a different influence on the microbial composition and metabolism in the jejunum and colon compared with FOS and lactose. In the jejunum, compared with the FOS and lactose groups, the 2'-FL group showed a higher abundance of Bacteroides, Prevotella, and Blautia, but a lower abundance of Streptococcus and Lactobacillus (P < 0.05), with a higher level of propionate and a lower level of lactate during fermentation (P < 0.05). In the colon, compared with the FOS and lactose groups, 2'-FL increased the abundance of Blautia, Faecalibacterium, and Lachnospiraceae FCS020, but decreased the abundance of Prevotella_9, Succinivibrio, and Megasphaera (P < 0.05) with an increase in acetate production (P < 0.05). CONCLUSION: Overall, the results suggested that the small intestinal microbiota had the potential to ferment milk oligosaccharides. Meanwhile, in comparison with FOS and lactose, 2'-FL selectively stimulated the growth of propionate-producing bacteria in the jejunum and acetate-producing bacteria in the colon. These results demonstrated the differences in fermentation properties of 2'-FL by small and large intestinal microbiota and provided new evidence for the application of 2'-FL in optimizing gut microbiota. © 2023 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Fermentação , Propionatos/farmacologia , Lactose/metabolismo , Oligossacarídeos/metabolismo , Acetatos/farmacologia
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123811, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154303

RESUMO

In this work, a biosensor based on Fano resonance metasurface is proposed for the specific detection of CA242 which is a typical marker of pancreatic cancer. The biosensor consists of a chiral symmetric plasma double "N" structure, which utilises coherent coupling of bright and dark modes to generate Fano resonance, achieving suppression of radiation loss, concentrating and storing energy more efficiently in the structure, and contributing to increased sensitivity to changes in ambient refractive index, resulting in a sensitivity of the sensor of up to 842.8 nm /RIU. After a series of antibody functionalization modifications, the metasurface has become an immune biosensor that can specifically detect the tumor marker CA242 of pancreatic cancer. The detection of mixed and single antigen solutions with different concentrations has verified the high sensitivity, high specificity, and high linear relationship of the biosensor to CA242, and the detection limit is as low as 0.0692 ng/mL. It is superior to other common methods and breaks the traditional disadvantages of lower detection accuracy and greater damage in tumour detection methods. The detection of the wavelength shift of localized surface plasmon resonance in plasma metasurface has been successfully applied to the highly sensitive detection of tumor markers. This study demonstrates the sensitivity and maneuverability of the chiral symmetric double "N" plasmonic metasurface biosensor, suggesting the potential application of metamaterials in biosensing based on environmental refractive index changes.


Assuntos
Técnicas Biossensoriais , Neoplasias Pancreáticas , Humanos , Ressonância de Plasmônio de Superfície/métodos , Anticorpos , Sensibilidade e Especificidade , Biomarcadores Tumorais
6.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686316

RESUMO

The growing occurrence of detrimental algal blooms resulting from industrial and agricultural activities emphasizes the urgency of implementing efficient removal strategies. In this study, we have successfully synthesized stable and biocompatible carbon dots (R-CDs) capable of generating reactive oxygen species (ROS) upon exposure to natural light irradiation. Phaeocystis globosa Scherffel (PGS) was selected as a representative model for conducting anti-algal experiments. Remarkably, in the presence of R-CDs, the complete eradication of harmful algae within a simulated light exposure period of 27 h was achieved. Furthermore, fluorescence lifetime imaging microscopy (FLIM) was first employed to study the physiological processes involved in the oxidative stress induced by PGS when subjected to ROS attack. The findings of this study demonstrate the potential of R-CDs as a highly promising anti-algal agent. This elucidation of the mechanism contributes to a comprehensive understanding of the efficacy and effectiveness of such agents in combating algal growth, further inspiring the development of other anti-algal agents.


Assuntos
Carvão Vegetal , Haptófitas , Espécies Reativas de Oxigênio , Estresse Oxidativo , Agricultura
7.
Nanomaterials (Basel) ; 13(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630969

RESUMO

Harmful algal blooms (HABs) are a global concern because they harm aquatic ecosystems and pose a risk to human health. Various physical, chemical, and biological approaches have been explored to control HABs. However, these methods have limitations in terms of cost, environmental impact, and effectiveness, particularly for large water bodies. Recently, the use of nanoparticles has emerged as a promising strategy for controlling HABs. Briefly, nanoparticles can act as anti-algae agents via several mechanisms, including photocatalysis, flocculation, oxidation, adsorption, and nutrient recovery. Compared with traditional methods, nanoparticle-based approaches offer advantages in terms of environmental friendliness, effectiveness, and specificity. However, the challenges and risks associated with nanoparticles, such as their toxicity and ecological impact, must be considered. In this review, we summarize recent research progress concerning the use of nanoparticles to control HABs, compare the advantages and disadvantages of different types of nanoparticles, discuss the factors influencing their effectiveness and environmental impact, and suggest future directions for research and development in this field. Additionally, we explore the causes of algal blooms, their harmful effects, and various treatment methods, including restricting eutrophication, biological control, and disrupting living conditions. The potential of photocatalysis for generating reactive oxygen species and nutrient control methods using nanomaterials are also discussed in detail. Moreover, the application of flocculants/coagulants for algal removal is highlighted, along with the challenges and potential solutions associated with their use. This comprehensive overview aims to contribute to the development of efficient and sustainable strategies for controlling HAB control.

8.
Talanta ; 259: 124520, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058943

RESUMO

Glutathione (GSH) is present in almost every cell in the body and plays various integral roles in many biological processes. The Golgi apparatus is a eukaryotic organelle for the biosynthesis, intracellular distribution, and secretion of various macromolecules; however, the mechanism of GSH in the Golgi apparatus has not been fully elucidated. Here, specific and sensitive sulfur-nitrogen co-doped carbon dots (SNCDs) with orange-red fluorescence was synthesized for the detection of GSH in the Golgi apparatus. The SNCDs have a Stokes shift of 147 nm and excellent fluorescence stability, and they exhibited excellent selectivity and high sensitivity to GSH. The linear response of the SNCDs to GSH was in the range of 10-460 µM (LOD = 0.25 µΜ). More importantly, we used SNCDs with excellent optical properties and low cytotoxicity as probes, and successfully realized golgi imaging in HeLa cells and GSH detection at the same time.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Humanos , Células HeLa , Corantes Fluorescentes/toxicidade , Pontos Quânticos/toxicidade , Carbono/toxicidade , Glutationa , Complexo de Golgi , Nitrogênio , Limite de Detecção
9.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234694

RESUMO

High-quality fluorescent probes based on carbon dots (CDs) have promising applications in many fields owing to their good stability, low toxicity, high quantum yield, and low raw material price. The fluorine- and nitrogen-doped fluorescent CDs (NFCDs) with blue fluorescence was successfully synthesized using 3-aminophenol and 2,4-difluorobenzoic acid as the raw material by the hydrothermal method. The NFCDs as probe can be used to directly and indirectly detect Fe3+ (detection range: 0.1-150 µM and detection limit: 0.14 µM) and ascorbic acid (AA) (detection range: 10-80 µM and detection limit: 0.11 µM). The NFCDs-based probe shows exceptional selectivity and strong anti-interference for Fe3+ and ascorbic acid (AA). In addition, we examined the response of NFCDs to Fe3+ and AA in living cells, which showed that the timely use of AA can reduce the effects of iron poisoning. This has important biological significance. This means that using NFCDs as fluorescent probes is beneficial for Fe3+ and AA detection and observing their dynamic changes in living cells. Thus, this work may contribute to the study of Fe3+- and AA-related diseases.


Assuntos
Carbono , Pontos Quânticos , Ácido Ascórbico , Compostos Férricos , Corantes Fluorescentes , Flúor , Ferro , Limite de Detecção , Nitrogênio , Espectrometria de Fluorescência/métodos
10.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014385

RESUMO

Copper ions (Cu2+) and sulfur ions (S2-) are important elements widely used in industry. However, these ions have the risk of polluting the water environment. Therefore, rapid and quantitative detection methods for Cu2+ and S2- are urgently required. Using 2,4-difluorobenzoic acid and L-lysine as precursors, nitrogen and fluorine co-doped dots (N, F-CDs) were synthesized in this study via a hydrothermal method. The aqueous N, F-CDs showed excellent stability, exhibited satisfactory selectivity and excellent anti-interference ability for Cu2+ detection. The N, F-CDs, based on the redox reactions for selective and quantitative detection of Cu2+, showed a wide linear range (0-200 µM) with a detection limit (215 nM). By forming the N, F-CDs@Cu2+ sensing platform and based on the high affinity of S2- to Cu2+, the N, F-CDs@Cu2+ can specifically detect S2- over a linear range of 0-200 µM with a detection limit of 347 nM. In addition, these fluorescent probes achieved good results when used for Cu2+ and S2- detection in environmental water samples, implying the good potential for applications.


Assuntos
Carbono , Pontos Quânticos , Cobre , Corantes Fluorescentes , Fluoretos , Flúor , Íons , Nitrogênio , Espectrometria de Fluorescência/métodos , Sulfetos , Água
11.
Anal Chim Acta ; 1225: 340202, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36038231

RESUMO

Hydrosulfuric acid is an aqueous solution of hydrogen sulfide (H2S). At physiological pH, approximately 80% of the total amount of H2S exists in the form of monoanionic HS-. Because HS- is both widely distributed and highly toxic to humans, it is necessary to design an efficient method to detect HS- with high sensitivity and selectivity. So, the nitrogen-doped carbon dots (NCDs) with green fluorescence are synthesized using a one-step hydrothermal method. The as-prepared NCDs show it can be effectively used as an indicator for monitoring HS-. And the NCD fluorescence intensity exhibits a linear relationship with HS- concentration. In addition, NCDs as a probe can be applied for fluorescence imaging in living cells to detect the presence of trace exogenous HS-.


Assuntos
Carbono , Pontos Quânticos , Corantes Fluorescentes/toxicidade , Humanos , Nitrogênio , Imagem Óptica , Pontos Quânticos/toxicidade , Espectrometria de Fluorescência/métodos
12.
Front Nutr ; 9: 896815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651506

RESUMO

As a microbial tryptophan metabolite, indole-3-carboxaldehyde (ICA) has been suggested to confer benefits to host, such as regulation of intestinal barrier function. This study aimed to elucidate the role of ICA in modulating intestinal homeostasis via using a weaned pig model. Twenty-four weaned piglets were randomly allocated into three groups: the control group (a basal diet), ICA100 group (the basal diet supplemented with 100 mg/kg ICA), and ICA200 group (the basal diet supplemented with 200 mg/kg ICA). The experiment lasted 14 d, and pigs from the control and ICA100 groups were slaughtered. The results showed no significant differences in the average daily gain (ADG) and average daily feed intake (ADFI) among the three groups (P > 0.05). However, the ICA100 group had a lower feed to gain ratio (F:G) (P < 0.05). Dietary ICA supplementation did not alter the villus height, crypt depth, and villus height/crypt depth ratio in the small intestine, and did not change the intestinal permeability and antioxidant parameters (P > 0.05). Intriguingly, ICA treatment significantly increased the jejunal, ileal and colonic indexes in piglets (P < 0.05). Besides, the expression of proliferating cell nuclear antigen (PCNA) in the intestine was up-regulated by ICA treatment. Moreover, in vitro experiments demonstrated that 15 µM ICA significantly accelerated the proliferation activity of IPEC-J2 cells, and increased the expression of the ICA receptor aryl hydrocarbon receptor (AHR) and the proliferation markers PCNA and Cyclin D1 (P < 0.05). In addition, dietary ICA supplementation modulated the intestinal flora, increasing the richness estimators and diversity index, decreasing the abundances of phylum Fibrobacterota and genera Alloprevotella, Prevotella, and Parabacteroides, and enriching the abundance of genera Butyrivibrio. These data reveal a beneficial role for the microbial metabolite ICA on intestinal epithelial proliferation, rather than intestinal barrier function, in weaned piglets.

13.
Nanomaterials (Basel) ; 12(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35564197

RESUMO

Carbon dots (CDs), a class of fluorescent nanomaterials, have attracted widespread attention from researchers. Because of their unique chemical properties, these high-quality fluorescent probes are widely used for ion and molecule detection. Excess intake of many ions or molecules can cause harm to the human body. Although iron (in the form of Fe3+ ions) is essential for the human body, excess iron in the human body can cause many diseases, such as iron poisoning. In this study, we have synthesized fluorine and nitrogen co-doped carbon dots (FNCDs) by a hydrothermal method. These FNCDs exhibited good stability, selectivity, and anti-interference ability for Fe3+. Fe3+ could be detected in the range of 0.2-300 µM, and their detection limit is up to 0.08 µM. In addition, the recovery and relative standard deviation measured by the standard addition recovery method were not higher than 107.5% and 1.1%, respectively, indicating that FNCDs have good recovery and accuracy for Fe3+ detection.

14.
Talanta ; 247: 123546, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594834

RESUMO

Nanozymes are a series of elaborately designed nanomaterials that can mimic the catalytic sites of natural enzymes for reactions. Bypassing the tedious design and preparation of nanomaterial, in this work, we report on a novel just-in-time production system of copper hexacyanoferrate nanoparticles (CHNPs), which act as an oxidase-mimicking nanozyme. This system can rapidly produce CHNPs nanozyme on demand by simply mixing Cu(II) with potassium hexacyanoferrate(III) (K3[Fe(CN)6]). It is found that once K3[Fe(CN)6] is reduced to K4[Fe(CN)6], the formation of CHNPs is inhibited. Therefore, the just-in-time production system of CHNPs was coupled with alkaline phosphatase (ALP) to construct an enzyme-controllable just-in-time production (ECJP) system, in which ALP could inhibit the production of by catalyzing the hydrolysis of ascorbic acid 2-phosphate (AAP) to generating ascorbic acid (AA). The ECJP system is then used to probe the activity of ALP by employing 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as the chromogenic substrate, and a detection limit of 0.003 U L-1 was achieved. Moreover, by adapting ALP as the enzyme label, an ECJP system-based colorimetric immunoassay protocol was established for sensitive detection of aflatoxin B1 (AFB1), and a detection limit as low as 0.73 pg mL-1 was achieved. The developed immunoassay method is successfully applied to the detection of AFB1 in peanut samples. The operation of ECJP system is quite simple and the coupling of ALP with CHNPs nanozyme can arouse dual enzyme-like cascade signal amplification. So, we believe this work can offer a new perspective for the development of nanozymes-based biodetection methods and colorimetric immunoassay strategies.


Assuntos
Colorimetria , Nanopartículas , Fosfatase Alcalina , Colorimetria/métodos , Cobre , Ferrocianetos , Imunoensaio/métodos , Limite de Detecção , Oxirredutases
15.
Compr Rev Food Sci Food Saf ; 21(2): 1843-1867, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142431

RESUMO

Foodborne pathogens and microbial toxins are the main causes of foodborne illness. However, trace pathogens and toxins in foods are difficult to detect. Thus, techniques for their rapid and sensitive identification and quantification are urgently needed. Phages can specifically recognize and adhere to certain species of microbes or toxins due to molecular complementation between capsid proteins of phages and receptors on the host cell wall or toxins, and thus they have been successfully developed into a detection platform for pathogens and toxins. This review presents an update on phage-based luminescent detection technologies as well as their working principles and characteristics. Based on phage display techniques of temperate phages, reporter gene detection assays have been designed to sensitively detect trace pathogens by luminous intensity. By the host-specific lytic effects of virulent phages, enzyme-catalyzed chemiluminescent detection technologies for pathogens have been exploited. Notably, these phage-based luminescent detection technologies can discriminate viable versus dead microbes. Further, highly selective and sensitive immune-based assays have been developed to detect trace toxins qualitatively and quantitatively via antibody analogs displayed by phages, such as phage-ELISA (enzyme-linked immunosorbent assay) and phage-IPCR (immuno-polymerase chain reaction). This literature research may lead to novel and innocuous phage-based rapid detection technologies to ensure food safety.


Assuntos
Bacteriófagos , Bacteriófagos/genética
16.
Nanoscale ; 13(43): 18192-18200, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34713877

RESUMO

Effective separation of the photogenerated electrons and holes is critical to improve photocatalytic efficiency. To achieve this, we design a Z-scheme g-ZnO/2H-MoS2 heterostructure to spatially separate the photogenerated carriers promoting the reduction of CO2 on the surface of the heterostructure, through density functional theory (DFT) calculations. The g-ZnO/2H-MoS2 heterostructure has a narrow band gap, which is beneficial to speed up the transport of carriers. Simultaneously, the designed heterostructure forms a built-in electric field between the layers to cause band bending, which is very conducive to separate the photogenerated electrons on g-ZnO and the photogenerated holes on 2H-MoS2, and suppress their recombination effectively. Furthermore, the reaction mechanism of photocatalytic reduction of CO2 to CH4 on g-ZnO/2H-MoS2 is studied. The calculation results show that the Z-scheme charge transfer mechanism reduces the barrier of the potential energy control step compared with pristine g-ZnO and 2H-MOS2. Our calculations lay a theoretical foundation for designing and developing high performance photocatalysts for the photocatalytic reduction of CO2.

17.
J Biophotonics ; 14(12): e202100230, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34523799

RESUMO

Stimulated emission depletion (STED) nanoscopy is a promising super-resolution imaging technique for microstructure imaging; however, the performance of super-resolution techniques critically depends on the properties of the fluorophores (photostable fluorophores) used. In this study, a suitable probe for improving the resolution of STED nanoscopy was investigated. Quantum dots (QDs) typically exhibit good photobleaching resistance characteristics. In comparison with CdSe@ZnS QDs and CsPbBr3 QDs, Cd-free InP/ZnSeS QDs have a smaller size and exhibit an improved photobleaching resistance. Through imaging using InP/ZnSeS QDs, we achieved an ultrahigh resolution of 26.1 nm. Furthermore, we achieved a 31 nm resolution in cell experiments involving InP/ZnSeS QDs. These results indicate that Cd-free InP/ZnSeS QDs have significant potential for application in fluorescent probes for STED nanoscopy.


Assuntos
Pontos Quânticos , Corantes Fluorescentes , Microscopia de Fluorescência , Fotodegradação
18.
Nanomaterials (Basel) ; 11(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067118

RESUMO

The use of carbon dots (CDs) with dual emission based on ratiometric fluorescence has been attracting attention in recent times for more accurate ion detection since they help avoid interference from background noise, probe concentration, and complexity. Herein, novel dual-emission nitrogen-doped CDs (NCDs) were prepared by a simple method for Cu2+ and ClO- detection. The NCDs showed excellent anti-interference ability and selectivity for different emissions. In addition, a good linear relationship was observed between the fluorescence intensity (FI) of the NCD solutions in different emissions with Cu2+ (0-90 µM) and ClO- (0-75 µM). The limits of both Cu2+ detection and ClO- were very low, at 17.7 and 11.6 nM, respectively. The NCDs developed herein also showed a good recovery rate in water for Cu2+ and ClO- detection. Hence, they are expected to have a more extensive application prospect in real samples.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 240: 118592, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32615499

RESUMO

Low-toxic and environmentally friendly carbon dots (CDs) have been extensively applied in various fields. CDs usually demonstrate excellent selectivity and high sensitivity, especially in ion detection. However, the most commonly used CDs are excited by ultraviolet (UV) light and emit weak fluorescence light, limiting their application in some fields. Herein, novel fluorine and nitrogen codoped carbon dots (FNCDs) were prepared by a simple hydrothermal method and used as a fluorescent probe for ion detection. The FNCDs were excited by blue light and emitted strong green fluorescence, and the photoluminescence quantum yield was as high as 56.7%. The fluorescence of the FNCDs could be rapidly quenched by ClO- ions, indicating their potential application for ClO- detection. The fluorescence of the FNCDs was quenched by ClO- ions in less than 1 min, and the intensity of the fluorescence decreased linearly as the ClO- concentration increased from 0 to 20 µM. The detection limit was calculated to be as low as 8.2 nM, indicating high sensitivity of the FNCDs probe. The quench effect of the ClO- ions on the FNCDs probe fluorescence was not affected by other ions, demonstrating excellent selectivity of the FNCDs probe. Because of their excellent biological compatibility, the FNCDs were also successfully used to identify exogenous ClO- in living cells. These FNCDs have promising prospects as novel sensitive and inexpensive probes for the detection of pollutants and in the pathological studies of clinical diseases.


Assuntos
Carbono , Pontos Quânticos , Corantes Fluorescentes , Humanos , Nitrogênio , Pontos Quânticos/toxicidade , Água
20.
Phys Chem Chem Phys ; 22(18): 10305-10313, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32356552

RESUMO

Transition metal modified molybdenum disulfide to improve the performance of photocatalytic reduction of carbon dioxide has been receiving much attention. Herein, a novel high-efficiency photocatalytic composite Ag/2H-MoS2 has been constructed and simulated using density functional theory (DFT) for unveiling the mechanism of improved photocatalytic reduction of CO2 in our experimental research. Our calculations about the band structure and electronic and optical properties indicate that the loading of Ag atoms enhances the photocatalytic performance of 2H-MoS2 nanosheets by transferring the photogenerated electrons from the valence band of 2H-MoS2 to the loaded Ag atoms. Furthermore, 20 wt% Ag loaded 2H-MoS2 is the most suitable for the thermodynamic requirement of reducing CO2 to CH4 among the catalysts with different Ag loadings, and the formation of *CHO in 20 wt% Ag/2H-MoS2 is the potential-determining step, whose Gibbs free energy reduces from 2.830 eV of 2H-MoS2 to 0.925 eV. Meanwhile the thermochemical results predict the best path for reducing CO2 on such a photocatalyst as CO2 → *COOH → *CO → *CHO → *CH2O → *OCH3 → *CH3OH → CH4. The photocatalytic performance of pristine 2H-MoS2 in CO2 reduction is therefore significantly improved by loading silver. This research provides a theoretical reference for transition metal modified 2H-MoS2 nanosheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...