Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1301-1311, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886429

RESUMO

Clarifying current situation of farmers' fertilization and yield in citrus producing areas and the effects of different fertilization measures can provide a scientific basis for improving the yield and quality of citrus in China. We retrieved 92 literatures on citrus fertilization from the CNKI and Web of Science to examine the impacts of nitrogen (N), phosphorus (P or P2O5), and potassium (K or K2O) fertilizer dosage and partial productivity under farmers' conventional fertilization and experts' optimized fertilization, as well as the effects of optimized fertilization measures on citrus yield and quality by using meta-analysis approach. The average conventional application rates of N, P2O5, and K2O were 507.3, 262.2, and 369.3 kg·hm-2 in citrus production in China. Compared with conventional fertilization, optimized fertilization resulted in a reduction of N and P2O5 by 14.7% and 8.3%, an increase in K2O application by 6.6%, which promoted partial productivity of N, P2O5, and K2O fertilizers by 7.8%, 18.4%, and 14.7%, correspondingly. The optimized fertilization resulted in 11.9% and 2.8% increase in fruit yield and single fruit weight, while improved vitamin C content (Vc, 3.1%), total soluble solids (TSS, 5.9%) and total sugar content (TSC, 8.6%). Additionally, it also led to a reduction in titratable acid (TA, -3.4%) and total acid content (TAC, -3.6%), and consequently elevated the TSS/TA (14.0%) and TSC/TAC (9.5%). Among different optimized fertilization methods, the effect of optimized NPK + medium and/or micro element fertilizer on citrus yield and fruit quality was the best, especially NPK decrement ≤25% between optimized NPK measures. The effect of conventional NPK + organic fertilizer was higher than conventional NPK + medium and/or micro element fertilizer. However, different citrus varieties, including mandarins, pomelos, and oranges, showed different responses to optimized fertilization. Optimized fertilization management could synergistically improve citrus yield, fertilizer use efficiency, and fruit quality. Therefore, the strategy of integrated nutrient management1 with reducing NPK fertilizer, balancing medium and/or micro nutrient fertilizer and improving soil fertility by organic fertilizer should be adopted according to local conditions in citrus producing areas of China.


Assuntos
Citrus , Fertilizantes , Frutas , Nitrogênio , Fósforo , Fertilizantes/análise , Citrus/crescimento & desenvolvimento , China , Fósforo/análise , Nitrogênio/análise , Frutas/crescimento & desenvolvimento , Frutas/química , Nutrientes/análise , Agricultura/métodos , Potássio/análise , Biomassa , Produção Agrícola/métodos
2.
BMC Plant Biol ; 22(1): 370, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879653

RESUMO

BACKGROUND: In China, nitrogen (N)-deficiency often occurs in Citrus orchards, which is one of the main causes of yield loss and fruit quality decline. Little information is known about the adaptive responses of Citrus carbon (C) and N metabolisms to N-deficiency. Seedlings of 'Xuegan' (Citrus sinensis (L.) Osbeck) were supplied with nutrient solution at an N concentration of 0 (N-deficiency), 5, 10, 15 or 20 mM for 10 weeks. Thereafter, we examined the effects of N supply on the levels of C and N in roots, stems and leaves, and the levels of organic acids, nonstructural carbohydrates, NH4+-N, NO3--N, total soluble proteins, free amino acids (FAAs) and derivatives (FAADs), and the activities of key enzymes related to N assimilation and organic acid metabolism in roots and leaves. RESULTS: N-deficiency elevated sucrose export from leaves to roots, C and N distributions in roots and C/N ratio in roots, stems and leaves, thus enhancing root dry weight/shoot dry weight ratio and N use efficiency. N-deficient leaves displayed decreased accumulation of starch and total nonstructural carbohydrates (TNC) and increased sucrose/starch ratio as well as a partitioning trend of assimilated C toward to sucrose, but N-deficient roots displayed elevated accumulation of starch and TNC and reduced sucrose/starch ratio as well as a partitioning trend of assimilated C toward to starch. N-deficiency reduced the concentrations of most FAADs and the ratios of total FAADs (TFAADs)/N in leaves and roots. N-deficiency reduced the demand for C skeleton precursors for amino acid biosynthesis, thus lowering TFAADs/C ratio in leaves and roots. N-deficiency increased (decreased) the relative amounts of C-rich (N-rich) FAADs, thus increasing the molar ratio of C/N in TFAADs in leaves and roots. CONCLUSIONS: Our findings corroborated our hypothesis that C and N metabolisms displayed adaptive responses to N-deficiency in C. sinensis seedlings, and that some differences existed between roots and leaves in N-deficiency-induced alterations of and C and N metabolisms.


Assuntos
Citrus sinensis , Citrus , Carboidratos , Carbono/metabolismo , Citrus/metabolismo , Citrus sinensis/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/fisiologia , Amido/metabolismo , Sacarose/metabolismo
3.
Tree Physiol ; 41(2): 280-301, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33104211

RESUMO

Citrus sinensis (L.) Osbeck seedlings were fertigated with nutrient solution containing 2 [magnesium (Mg)-sufficiency] or 0 mM (Mg-deficiency) Mg(NO3)2 for 16 weeks. Thereafter, RNA-Seq was used to investigate Mg-deficiency-responsive genes in the veins of upper and lower leaves in order to understand the molecular mechanisms for Mg-deficiency-induced vein lignification, enlargement and cracking, which appeared only in the lower leaves. In this study, 3065 upregulated and 1220 downregulated, and 1390 upregulated and 375 downregulated genes were identified in Mg-deficiency veins of lower leaves (MDVLL) vs Mg-sufficiency veins of lower leaves (MSVLL) and Mg-deficiency veins of upper leaves (MDVUL) vs Mg-sufficiency veins of upper leaves (MSVUL), respectively. There were 1473 common differentially expressed genes (DEGs) between MDVLL vs MSVLL and MDVUL vs MSVUL, 1463 of which displayed the same expression trend. Magnesium-deficiency-induced lignification, enlargement and cracking in veins of lower leaves might be related to the following factors: (i) numerous transciption factors and genes involved in lignin biosynthesis pathways, regulation of cell cycle and cell wall metabolism were upregulated; and (ii) reactive oxygen species, phytohormone and cell wall integrity signalings were activated. Conjoint analysis of proteome and transcriptome indicated that there were 287 and 56 common elements between DEGs and differentially abundant proteins (DAPs) identified in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively, and that among these common elements, the abundances of 198 and 55 DAPs matched well with the transcript levels of the corresponding DEGs in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively, indicating the existence of concordances between protein and transcript levels.


Assuntos
Citrus sinensis , Citrus , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Magnésio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , RNA-Seq , Transcriptoma
4.
Tree Physiol ; 40(9): 1277-1291, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32348504

RESUMO

Little is known about the physiological and molecular mechanisms underlying magnesium (Mg)-deficiency-induced enlargement, cracking and lignification of midribs and main lateral veins of Citrus leaves. Citrus sinensis (L.) Osbeck seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg(NO3)2 for 16 weeks. Enlargement, cracking and lignification of veins occurred only in lower leaves, but not in upper leaves. Total soluble sugars (glucose + fructose + sucrose), starch and cellulose concentrations were less in Mg-deficiency veins of lower leaves (MDVLL) than those in Mg-sufficiency veins of lower leaves (MSVLL), but lignin concentration was higher in MDVLL than that in MSVLL. However, all four parameters were similar between Mg-deficiency veins of upper leaves (MDVUL) and Mg-sufficiency veins of upper leaves (MSVUL). Using label-free, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we identified 1229 and 492 differentially abundant proteins (DAPs) in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively. Magnesium-deficiency-induced alterations of Mg, nonstructural carbohydrates, cell wall components, and protein profiles were greater in veins of lower leaves than those in veins of upper leaves. The increased concentration of lignin in MDVLL vs MSVLL might be caused by the following factors: (i) repression of cellulose and starch accumulation promoted lignin biosynthesis; (ii) abundances of proteins involved in phenylpropanoid biosynthesis pathway, hormone biosynthesis and glutathione metabolism were increased; and (iii) the abundances of the other DAPs [viz., copper/zinc-superoxide dismutase, ascorbate oxidase (AO) and ABC transporters] involved in lignin biosynthesis were elevated. Also, the abundances of several proteins involved in cell wall metabolism (viz., expansins, Rho GTPase-activating protein gacA, AO, monocopper oxidase-like protein and xyloglucan endotransglucosylase/hydrolase) were increased in MDVLL vs MSVLL, which might be responsible for the enlargement and cracking of leaf veins.


Assuntos
Citrus sinensis , Citrus , Cromatografia Líquida , Magnésio , Folhas de Planta , Raízes de Plantas , Espectrometria de Massas em Tandem
5.
BMC Plant Biol ; 19(1): 477, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694545

RESUMO

BACKGROUND: Limited data are available on the responses of reactive oxygen species (ROS) and methylglyoxal (MG) metabolisms to low pH in roots and leaves. In China, quite a few of Citrus are cultivated in acidic soils (pH < 5.0). 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) (C. sinensis were more tolerant to low pH than C. grandis) seedlings were irrigated daily with nutrient solution at a pH of 2.5, 3 or 5 for nine months. Thereafter, we examined low pH effects on growth, and superoxide anion production rate (SAP), malondialdehyde (MDA), MG, antioxidants, and enzymes related to ROS and MG detoxification in roots and leaves in order to (a) test the hypothesis that low pH affected ROS and MG metabolisms more in roots than those of leaves, and (b) understand the roles of ROS and MG metabolisms in Citrus low pH-tolerance and -toxicity. RESULTS: Compared with control, most of the physiological parameters related to ROS and MG metabolisms were greatly altered at pH 2.5, but almost unaffected at pH 3. In addition to decreased root growth, many fibrous roots became rotten and died at pH 2.5. pH 2.5-induced changes in SAP, the levels of MDA, MG and antioxidants, and the activities of most enzymes related to ROS and MG metabolisms were greater in roots than those of leaves. Impairment of root ascorbate metabolism was the most serious, especially in C. grandis roots. pH 2.5-induced increases in MDA and MG levels in roots and leaves, decreases in the ratios of ascorbate/(ascorbate+dehydroascorbate) in roots and leaves and of reduced glutathione/(reduced+oxidized glutathione) in roots were greater in C. grandis than those in C. sinensis. CONCLUSIONS: Low pH affected MG and ROS metabolisms more in roots than those in leaves. The most seriously impaired ascorbate metabolism in roots was suggested to play a role in low pH-induced root death and growth inhibition. Low pH-treated C. sinensis roots and leaves had higher capacity to maintain a balance between ROS and MG production and their removal via detoxification systems than low pH-treated C. grandis ones, thus contribute to the higher acid-tolerance of C. sinensis.


Assuntos
Citrus/metabolismo , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Citrus sinensis/metabolismo , Concentração de Íons de Hidrogênio , Malondialdeído/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Superóxidos/metabolismo
6.
Plants (Basel) ; 8(10)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575029

RESUMO

Citrus sinensis seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg (NO3)2 for 16 weeks. Mg-deficiency-induced interveinal chlorosis, vein enlargement and corkiness, and alterations of gas exchange, pigments, chlorophyll a fluorescence (OJIP) transients and related parameters were observed in middle and lower leaves, especially in the latter, but not in upper leaves. Mg-deficiency might impair the whole photosynthetic electron transport, including structural damage to thylakoids, ungrouping of photosystem II (PSII), inactivation of oxygen-evolving complex (OEC) and reaction centers (RCs), increased reduction of primary quinone electron acceptor (QA) and plastoquinone pool at PSII acceptor side and oxidation of PSI end-electron acceptors, thus lowering energy transfer and absorption efficiency and the transfer of electrons to the dark reactions, hence, the rate of CO2 assimilation in Mg-deficiency middle and lower leaves. Although potassium, Mg, manganese and zinc concentration in blades displayed a significant and positive relationship with the corresponding element concentration in veins, respectively, great differences existed in Mg-deficiency-induced alterations of nutrient concentrations between leaf blades and veins. For example, Mg-deficiency increased boron level in the blades of upper leaves, decreased boron level in the blades of lower leaves, but did not affect boron level in the blades of middle leaves and veins of upper, middle and lower leaves. To conclude, Mg-deficiency-induced interveinal chlorosis, vein enlargement, and corkiness, and alterations to photosynthesis and related parameters increased with increasing leaf age. Mg-deficiency-induced enlargement and corkiness of veins were not caused by Mg-deficiency-induced boron-starvation.

7.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31248059

RESUMO

Magnesium (Mg) deficiency is one of the major constraining factors that limit the yield and quality of agricultural products. Uniform seedlings of the Citrus sinensis were irrigated with Mg deficient (0 mM MgSO4) and Mg sufficient (1 mM MgSO4) nutrient solutions for 16 weeks. CO2 assimilation, starch, soluble carbohydrates, TBARS content and H2O2 production were measured. Transcriptomic analysis of C. sinensis leaves was performed by Illumina sequencing. Our results showed that Mg deficiency decreased CO2 assimilation, but increased starch, sucrose, TBARS content and H2O2 production in C. sinensis leaves. A total of 4864 genes showed differential expression in response to Mg deficiency revealed by RNA-Seq and the transcriptomic data were further validated by real-time quantitative PCR (RT-qPCR). Gene ontology (GO) enrichment analysis indicated that the mechanisms underlying Mg deficiency tolerance in C. sinensis may be attributed to the following aspects: a) enhanced microtubule-based movement and cell cycle regulation; b) elevated signal transduction in response to biotic and abiotic stimuli; c) alteration of biological processes by tightly controlling phosphorylation especially protein phosphorylation; d) down-regulation of light harvesting and photosynthesis due to the accumulation of carbohydrates; e) up-regulation of cell wall remodeling and antioxidant system. Our results provide a comprehensive insight into the transcriptomic profile of key components involved in the Mg deficiency tolerance in C. sinensis and enrich our understanding of the molecular mechanisms by which plants adapted to a Mg deficient condition.


Assuntos
Citrus sinensis/genética , Regulação da Expressão Gênica de Plantas , Deficiência de Magnésio/genética , Folhas de Planta/genética , Transcriptoma , Transporte Biológico , Citrus sinensis/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Magnésio/metabolismo , Deficiência de Magnésio/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
8.
BMC Plant Biol ; 19(1): 76, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770733

RESUMO

BACKGROUND: Magnesium (Mg)-deficiency is one of the most prevalent physiological disorders causing a reduction in Citrus yield and quality. 'Xuegan' (Citrus sinensis) seedlings were irrigated for 16 weeks with nutrient solution containing 2 mM (Mg-sufficiency) or 0 mM (Mg-deficiency) Mg(NO3)2. Thereafter, we investigated the Mg-deficient effects on gas exchange and chlorophyll a fluorescence in the upper and lower leaves, and Mg, reactive oxygen species (ROS) and methylglyoxal (MG) metabolisms in the roots, lower and upper leaves. The specific objectives were to corroborate the hypothesis that the responses of ROS and MG metabolisms to Mg-deficiency were greater in the lower leaves than those in the upper leaves, and different between the leaves and roots. RESULTS: Mg level was higher in the Mg-deficient upper leaves than that in the Mg-deficient lower leaves. This might be responsible for the Mg-deficiency-induced larger alterations of all the measured parameters in the lower leaves than those in the upper leaves, but they showed similar change patterns between the Mg-deficient lower and upper leaves. Accordingly, Mg-deficiency increased greatly their differences between the lower and upper leaves. Most of parameters involved in ROS and MG metabolisms had similar variation trends and degrees between the Mg-deficient lower leaves and roots, but several parameters (namely glutathione S-transferase, sulfite reductase, ascorbate and dehydroascorbate) displayed the opposite variation trends. Obviously, differences existed in the Mg-deficiency-induced alterations of ROS and MG metabolisms between the lower leaves and roots. Although the activities of most antioxidant and sulfur metabolism-related enzymes and glyoxalase I and the level of reduced glutathione in the Mg-deficient leaves and roots and the level of ascorbate in the leaves were kept in higher levels, the levels of malonaldehyde and MG and/or electrolyte leakage were increased in the Mg-deficient lower and upper leaves and roots, especially in the Mg-deficient lower leaves and roots. CONCLUSIONS: The ROS and MG detoxification systems as a whole did not provide sufficient detoxification capacity to prevent the Mg-deficiency-induced production and accumulation of ROS and MG, thus leading to lipid peroxidation and the loss of plasma membrane integrity, especially in the lower leaves and roots.


Assuntos
Citrus sinensis/fisiologia , Magnésio/metabolismo , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Clorofila A/metabolismo , Fluorescência , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Plântula/fisiologia , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...