Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107640, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122006

RESUMO

RBM45 is an RNA-binding protein with roles in neural development by regulating RNA splicing. Its dysfunction and aggregation are associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). RBM45 harbors three RRM domains that potentially bind RNA. While the recognitions of RNA by its N-terminal tandem RRM domains (RRM1 and RRM2) have been well understood, the RNA-binding property of its C-terminal RRM (RRM3) remains unclear. In this work, we identified that the RRM3 of RBM45 sequence-specifically binds RNA with a GACG sequence, similar but not identical to those recognized by the RRM1 and RRM2. Further, we determined the crystal structure of RBM45RRM3 in complex with a GACG sequence-containing single-stranded DNA. Our structural results, together with the RNA-binding assays of mutants at key amino acid residues, revealed the molecular mechanism by which RBM45RRM3 recognizes an RNA sequence. Our finding on the RNA-binding property of the individual RRM module of RBM45 provides the foundation for unraveling the RNA-binding characteristics of full-length RBM45 and for understanding the biological functions of RBM45.

2.
Biochem Biophys Res Commun ; 722: 150165, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38805786

RESUMO

Akkermansia muciniphila is a mucin-degrading probiotic that colonizes the gastrointestinal tract. Genomic analysis identified a set of genes involved in the biosynthesis of corrin ring, including the cobalt factor II methyltransferase CbiL, in some phylogroups of A. muciniphila, implying a potential capacity for de novo synthesis of cobalamin. In this work, we determined the crystal structure of CbiL from A. muciniphila at 2.3 Å resolution. AmCbiL exists as a dimer both in solution and in crystal, and each protomer consists of two α/ß domains, the N-terminal domain and the C-terminal domain, consistent with the folding of typical class III MTases. The two domains create an open trough, potentially available to bind the substrates SAM and cobalt factor II. Sequence and structural comparisons with other CbiLs, assisted by computer modeling, suggest that AmCbiL should have cobalt factor II C-20 methyltransferase activity. Our results support that certain strains of A. muciniphila may be capable of synthesizing cobalamin de novo.


Assuntos
Akkermansia , Metiltransferases , Modelos Moleculares , Metiltransferases/química , Metiltransferases/metabolismo , Metiltransferases/genética , Akkermansia/enzimologia , Cristalografia por Raios X , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Vitamina B 12/metabolismo , Vitamina B 12/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...