RESUMO
Unfavorable phenotypes characterized by low immunogenicity and acidity within the tumor microenvironment (TME) contribute to immunosuppression and therapeutic resistance. Herein, we rationally synthesized a multifunctional nanoregulator by encapsulating DOX and erianin into calcium carbonate (CaCO3)-based nanoparticles using a modified double emulsion method. The DOX and erianin-loaded CaCO3-based nanoparticles, termed DECaNPs, could effectively induce the calcium overload by triggering calcium influx and absorbing CaCO3 nanoparticles. Additionally, DECaNPs also neutralize the acidic TME by interacting with extracellular protons and limiting lactic acid production, a result of metabolic remodeling in cancer cells. As a result, DECaNPs elicit cellular oxidative stress damage, which mediates the activation of ferroptosis/apoptosis hybrid pathways, and profound immunogenic cell death. Treatment with DECaNPs could inhibit the growth of tumors by promoting oxidative stress, acid neutralization, metabolic remodeling, and protective antitumor immunity in vivo. In addition, DECaNPs could synergistically amplify the antitumor effects of αPD-L1 in a bilateral tumor model by eliciting systemic immune responses. In all, our work presents the preparation of CaCO3-based nanoregulators designed to reverse the unfavorable TME and enhance αPD-L1 immunotherapy through multiple mechanisms.
Assuntos
Carbonato de Cálcio , Cálcio , Doxorrubicina , Imunoterapia , Carbonato de Cálcio/química , Carbonato de Cálcio/farmacologia , Animais , Humanos , Camundongos , Cálcio/metabolismo , Cálcio/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Proliferação de Células/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos Endogâmicos BALB C , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/químicaRESUMO
Chemotherapy plays a crucial role in triple-negative breast cancer (TNBC) treatment as it not only directly kills cancer cells but also induces immunogenic cell death. However, the chemotherapeutic efficacy was strongly restricted by the acidic and hypoxic tumor environment. Herein, we have successfully formulated PLGA-based nanoparticles concurrently loaded with doxorubicin (DOX), hemoglobin (Hb) and CaCO3 by a CaCO3-assisted emulsion method, aiming at the effective treatment of TNBC. We found that the obtained nanomedicine (DHCaNPs) exhibited effective drug encapsulation and pH-responsive drug release behavior. Moreover, DHCaNPs demonstrated robust capabilities in neutralizing protons and oxygen transport. Consequently, DHCaNPs could not only serve as oxygen nanoshuttles to attenuate tumor hypoxia but also neutralize the acidic tumor microenvironment (TME) by depleting lactic acid, thereby effectively overcoming the resistance to chemotherapy. Furthermore, DHCaNPs demonstrated a notable ability to enhance antitumor immune responses by increasing the frequency of tumor-infiltrating effector lymphocytes and reducing the frequency of various immune-suppressive cells, therefore exhibiting a superior efficacy in suppressing tumor growth and metastasis when combined with anti-PD-L1 (αPD-L1) immunotherapy. In summary, this study highlights that DHCaNPs could effectively attenuate the acidic and hypoxic TME, offering a promising strategy to figure out an enhanced chemo-immunotherapy to benefit TNBC patients.
RESUMO
Immunotherapy is the most promising systemic therapy for hepatocellular carcinoma. However, the outcome remains poor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a role in altering cell-surface protein levels, potentially undermining the efficacy of immunotherapy against tumors. This highlights its potential as a target for antitumor therapy. Herein, CaCO3-based nanoparticles coencapsulated with DOX, an immunogenic cell death (ICD) inducer, and evolocumab was developed to enhanced the efficacy of immunotherapy. The obtained DOX/evolocumab-loaded CaCO3 nanoparticle (named DECP) exhibits a good capacity of acid neutralization and causes ICD of cancer cells. In addition, DECP is able to evaluate the cell-surface level of MHC-I, a biomarker that correlates positively with patients' overall survival. Upon intravenous injection, DECP accumulates within the tumor site, leading to growth inhibition of hepa1-6 bearing subcutaneous tumors. Specifically, DECP treatment causes augmented ratios of matured dendritic cells, tumor-infiltrating CD8+ T cells and natural killing cells, while concurrently depleting Foxp3+ regulatory T cells. Peritumoral delivery of DECP enhances the immune response of distant tumors and exhibits antitumor effects when combined with intravenous αPD-L1 therapy in a bilateral tumor model. This study presents CaCO3-based nanoparticles with multiple immunomodulatory strategies against hepatocellular carcinoma by targeting PCSK9 inhibition and modulating immune homeostasis in the unfavorable TME.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pró-Proteína Convertase 9/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Linfócitos T CD8-Positivos , Neoplasias Hepáticas/tratamento farmacológico , Homeostase , SubtilisinasRESUMO
Autophagy receptor NDP52 triggers bacterial autophagy against infection. However, the ability of NDP52 to protect against viral infection has not been established. We show that NDP52 binds to envelope proteins of hepatitis B virus (HBV) and triggers a degradation process that promotes HBV clearance. Inactivating NDP52 in hepatocytes results in decreased targeting of viral envelopes in the lysosome and increased levels of viral replication. NDP52 inhibits HBV at both viral entry and late replication stages. In contrast to NDP52-mediated bacterial autophagy, lysosomal degradation of HBV envelopes is independent of galectin 8 and ATG5. NDP52 forms complex with Rab9 and viral envelope proteins and links HBV to Rab9-dependent lysosomal degradation pathway. These findings reveal that NDP52 acts as a sensor for HBV infection, which mediates a unique antiviral response to eliminate the virus. This work also suggests direct roles for autophagy receptors in other lysosomal degradation pathways than canonical autophagy.
Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Replicação Viral/fisiologiaRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is most common malignant tumor worldwide, and one of the most lethal malignancies. MEX3A, RNA-binding protein, is profoundly implicated in tumor initiation and progression. But its role and potential mechanism in HCC remains fully unclear. METHODS: The expression of MEX3A in HCC was analysis using the data derived from the Cancer Genome Atlas (TCGA) dataset and further confirmed by HCC samples and cells lines. The roles of MEX3A in the proliferation, migration and sorafenib resistance were detected both in vitro and vivo. In addition, the underline mechanism was investigated. RESULTS: In this study, MEX3A expression was upregulated in HCC tissue and cell lines. Knockdown or overexpression of MEX3A disturbed the proliferation, migration and apoptosis of HCC cells by modulating the activation of Hippo signaling pathway. The expression of MEX3A was negatively associated with sorafenib sensitivity and upregulated in sorafenib resistant HCC cells. MEX3A knockdown facilitated the expression of WWC1, a negative modulator of Hippo signaling pathway, and led to increase of the phosphorylation of LATS1 and YAP1. Pharmacological inhibition of LATS1 or WWC1 overexpression alleviated the proliferative and migrated suppression and increased sorafenib sensitivity, whereas WWC1 inhibition using genetic interference strategy showed opposite trend in MEX3A knockdown HCC cells. Importantly, MEX3A knockdown led to growth and lung metastasis inhibition using xenograft model established by means of subcutaneous or tail vein injection. In addition, a combination of MEX3A knockdown and WWC1 overexpression dramatically enhances the growth inhibition of sorafenib in vivo. CONCLUSION: MEX3A may facilitate HCC progression and hinder sorafenib sensitivity via inactivating Hippo signaling. The present study suggested that targeting MEX3A can be served as a novel therapeutic strategy for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/uso terapêutico , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/uso terapêutico , Proteínas de Ligação a RNA/genéticaRESUMO
Transarterial chemoembolization (TACE) is an important approach for the treatment of unresectable hepatocellular carcinoma (HCC). However, the lactic acid-induced acidic tumor microenvironment (TME) may reduce the therapeutic outcome of TACE. Herein, monodispersed gelatin microspheres loaded with calcium carbonate nanoparticles (CaNPs@Gel-MS) as novel embolic agents were prepared by a simplified microfluidic device. It was found that the particle size and homogeneity of as-prepared CaNPs@Gel-MS were strongly dependent on the flow rates of continuous and dispersed phases, and the inner diameter of syringe needle. The introduction of CaNPs provided the gelatin microspheres with an enhanced ability to encapsulate the chemotherapeutic drug of DOX, as well as a pH-responsive sustained drug release behavior. In vitro results revealed that CaNPs@Gel-MS could largely increase the cellular uptake and chemotoxicity of DOX by neutralizing the lactic acid in the culture medium. In addition, CaNPs@Gel-MS exhibited an excellent and persistent embolic efficiency in a rabbit renal model. Finally, we found that TACE treatment with DOX-loaded CaNPs@Gel-MS (DOX/CaNPs@Gel-MS) had a much stronger ability to inhibit tumor growth than the DOX-loaded gelatin microspheres without CaNPs (DOX@Gel-MS). Overall, CaNPs@Gel-MS could be a promising embolic microsphere that can significantly improve anti-HCC ability by reversing lactic acid-induced chemotherapy resistance during TACE treatment.
Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Coelhos , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina , Neoplasias Hepáticas/tratamento farmacológico , Microesferas , Gelatina , Ácido Láctico/uso terapêutico , Quimioembolização Terapêutica/métodos , Portadores de Fármacos/uso terapêutico , Microambiente TumoralRESUMO
The polarization of macrophages often leads to severe calcification and necrosis in aged atherosclerotic plaques, which eventually leads to poor prognosis of ischaemic cardiovascular and cerebrovascular diseases. More reliable diagnostic methods are urgently needed to discover therapeutic targets of macrophage polarization in aged atherosclerotic plaques. Metabolomics of aged plaques (n = 20) and macrophage polarization transcriptomes (n = 30) were integrated to identify metabolic therapeutic targets of macrophage polarization associated with aged plaque. Finally, metabolic inhibitors were used to verify the reliability of the target genes. Integrated multiomics analysis revealed that 6 metabolic pathways (including 21 genes) regulate macrophage polarization in aged atherosclerosis. Targeted treatment of macrophage polarization with metabolic inhibitors can effectively reduce the adverse risk of aged atherosclerosis. The combination of transcriptomics and metabolomics approaches can identify effective therapeutic targets for macrophage polarization in arteriosclerosis.
Assuntos
Aterosclerose , Placa Aterosclerótica , Idoso , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Humanos , Macrófagos/metabolismo , Metabolômica , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Reprodutibilidade dos Testes , TranscriptomaRESUMO
The development of novel theranostic agents with outstanding diagnostic and therapeutic performances is still strongly desired in the treatment of hepatocellular carcinoma (HCC). Here, a fucoidan-modified mesoporous polydopamine nanoparticle dual-loaded with gadolinium iron and doxorubicin (FMPDA/Gd3+/DOX) was prepared as an effective theranostic agent for magnetic resonance imaging (MRI)-guided chemo-photothermal therapy of HCC. It was found that FMPDA/Gd3+/DOX had a high photothermal conversion efficiency of 33.4% and excellent T1-MRI performance with a longitudinal relaxivity (r1) value of 14.966 mM-1·sâ¯-â¯1. Moreover, the results suggested that FMPDA/Gd3+/DOX could effectively accumulate into the tumor foci by dual-targeting the tumor-infiltrated platelets and HCC cells, which resulted from the specific interaction between fucoidan and overexpressed p-selectin receptors. The excellent tumor-homing ability and MRI-guided chemo-photothermal therapy therefore endowed FMPDA/Gd3+/DOX with a strongest ability to inhibit tumor growth than the respective single treatment modality. Overall, our study demonstrated that FMPDA/Gd3+/DOX could be applied as a potential nanoplatform for safe and effective cancer theranostics.
RESUMO
BACKGROUND: Over-expression of spinal protein kinase Cγ(PKCγ) contributes to the induction of persistent bilateral hyperalgesia following inflammatory injury, yet the role of spinal PKCγ in short- and long-lasting pain behavior is poorly understood. OBJECTIVE: This study aimed to characterize the contribution of spinal PKCγ to spontaneous pain and long-lasting bilateral hyperalgesia in formalin-induced inflamed mice using pharmacological inhibition. STUDY DESIGN: Laboratory animal study. SETTING: The study was performed in the Department of Human Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, the Fourth Military Medical University (Xi'an, China) and the Department of Anesthesiology, Fuzhou General Hospital (Fuzhou, China). METHODS: Male mice were unilaterally intraplantarly injected with formalin to induce inflammatory pain. Spontaneous pain behaviors, including flinches and lickings, were recorded by off-line video during the first hour post-injection and counted. Using von Frey tests, long-lasting bilateral mechanical paw withdrawal thresholds were determined before injection and at indicated time points thereafter. Temporal expression of spinal PKCγ was observed by immunohistochemical staining. For pharmacological inhibition, mice were treated daily with intrathecal Tat carrier or selective PKCγ inhibitor KIG31-1, from 1 hour prior to 10 days after formalin injection. Spontaneous pain behaviors and long-lasting bilateral mechanical hyperalgesia were assessed. Spinal PKCγ expression was also observed by using immunohistochemical staining and western blot. RESULTS: The number of PKCγ-immunoreactive (ir) spinal neurons was significantly higher at 10 days, but not 2 hours, after formalin intraplantar injection, and accompanied by long-lasting bilateral hyperalgesia. Furthermore, long-lasting bilateral hyperalgesia could be reversed by pharmacological inhibition of over-expressed spinal PKCγ; however, pretreating with intrathecal KIG31-1 showed no antinociceptive effects on short-term spontaneous pain behaviors. LIMITATIONS: All results were obtained from the mice and no PKCγ inhibitors were available through clinical practice. Therefore, it remains difficult to draw definitive connections between animal research and human application. CONCLUSION: Our findings suggest that spinal PKCγ plays a predominant role in long-lasting bilateral hyperalgesia, but not in the spontaneous pain behaviors induced by formalin. KEY WORDS: Formalin, spontaneous pain, mechanical hyperalgesia, protein kinase C gamma, KIG31-1, mice.
Assuntos
Dor Crônica/enzimologia , Hiperalgesia/enzimologia , Proteína Quinase C/metabolismo , Medula Espinal/enzimologia , Animais , Comportamento Animal/efeitos dos fármacos , China , Dor Crônica/induzido quimicamente , Formaldeído/toxicidade , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Medição da Dor/métodos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacosRESUMO
The non-steroidal anti-inflammatory drug celecoxib has long been used for reducing pain, in spite of moderate gastrointestinal side effects. In previous studies, it has been shown that celecoxib can inhibit formalin-induced spontaneous pain and secondary hyperalgesia. Injecting formalin into a rodent's hind paw not only induces acute pain behaviors, but also produces long-lasting hyperalgesia. Whether celecoxib can also have long-lasting effects is still unknown. Our results show that pretreatment with an intraperitoneal injection of celecoxib at one hour before formalin injection induced inhibition on the spontaneous flinch and licking behaviors in the second phase but not the first phase. Meanwhile, FOS expressions were also reduced with celecoxib pretreatment. Consecutive administration of celecoxib also protects the hind paw from hypoalgesia and relieves formalin-induced, long-lasting hyperalgesia in the ipsilateral hind paw. These analgesic effects may be related to suppression of the activation of neurons and astrocytes indicated by FOS and GFAP expressions. Based on the above findings, celecoxib demonstrated analgesic effects not only on acute spontaneous pain behavior but also on long-lasting hyperalgesia induced by formalin injection. The inhibition of neurons and astrocytes by celecoxib may be possible reasons for its analgesia.
Assuntos
Analgésicos/farmacologia , Celecoxib/uso terapêutico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Formaldeído , Hiperalgesia/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Medição da DorRESUMO
Understanding nonequilibrium glassy dynamics is of great scientific and technological importance. However, prediction of the temperature, thermal history, and composition dependence of nonequilibrium viscosity is challenging due to the noncrystalline and nonergodic nature of the glassy state. Here, we show that the nonequilibrium glassy dynamics are intimately connected with the equilibrium liquid dynamics. This is accomplished by deriving a new functional form for the thermal history dependence of nonequilibrium viscosity, which is validated against experimental measurements of industrial silicate glasses and computed viscosities for selenium over a wide range of conditions. Since the temperature and composition dependence of liquid viscosity can be predicted using temperature-dependent constraint theory, our work also opens the possibility to improve understanding of the physics of nonequilibrium viscosity.
RESUMO
In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.
RESUMO
The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (ß=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.
RESUMO
The low temperature dynamics of glass are critically important for many high-tech applications. According to the elastic theory of the glass transition, the dynamics of glass are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms. Here, we present a thorough test of the shoving model for predicting the low temperature dynamics of an oxide glass system. We show that the nonequilibrium viscosity of glass is governed by additional factors beyond changes in shear modulus.
RESUMO
A model of covalent and ionic bond strength is proposed in terms of the tensile unbinding force by introducing the concept of the effectively bonded valence electron (EBVE) number of a chemical bond. Bond strength proves to be exclusively dependent on two microscopic parameters: bond length and EBVE number. This model allows us to determine bond strength for a variety of crystals and accounts for the observation that a low-coordination number of binding atoms has a tendency to higher bond strength. For crystals of simple structures, we propose linking bond strength to the theoretical tensile strength of a crystal; the latter reproduces the results of first-principles calculations. The model also allows for the assessment of the theoretical tensile strength of graphene and single-walled nanotubes constructed with typical material systems.